EUROPEAN JOURNAL OF MATHEMATICAL SCIENCES

Vol. 1, No. 1, 2012, 27-35 www.ejmathsci.com

On Almost γ **-continuous Functions**

Hariwan Z. Ibrahim

Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq

Abstract. We introduce a new class of functions called almost γ -continuous functions which is contained in the class of almost continuous functions and contains the class of γ -continuous functions.

2010 Mathematics Subject Classifications: 54A05, 54A10; 54C05

Key Words and Phrases: γ -open, almost γ -continuous

1. Introduction

Kasahara [9] defined an operation α on a topological space to introduce α -closed graphs. Following the same technique, Ogata [16] defined an operation γ on a topological space and introduced γ -open sets. Basu et al. [4] introduced a type of continuity called γ -continuous function. Singal and Singal [18] introduced the notion of almost continuity.

In this paper, we introduce a new class of functions called almost γ -continuous functions which is contained in the class of almost continuous functions and contains the class of γ -continuous functions. We obtain basic properties of almost γ -continuous functions.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. Let (X, τ) be a space and A a subset of X. An operation γ [16] on a topology τ is a mapping from τ in to power set P(X) of Xsuch that $V \subseteq \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ -open [16] if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. Then, τ_{γ} denotes the set of all γ -open set in X. Clearly $\tau_{\gamma} \subseteq \tau$. Complements of γ -open sets are called γ -closed. The τ_{γ} -interior [10] of A is denoted by τ_{γ} -Int(A) and defined to be the union of all γ -open sets of X contained in A. A topological X with an operation γ on τ is said to be γ -regular [16] if for each

http://www.ejmathsci.com

Email address: hariwan_math@yahoo.com (H. Ibrahim)

 $x \in X$ and for each open neighborhood *V* of *x*, there exists an open neighborhood *U* of *x* such that $\gamma(U)$ contained in *V*. It is also to be noted that $\tau = \tau_{\gamma}$ if and only if *X* is a γ -regular space [16].

Definition 1. A subset A of a space X is said to be

- (i) α -open [14] if $A \subseteq Int(Cl(Int(A)))$.
- (ii) semi-open [12] if $A \subseteq Cl(Int(A))$.
- (iii) preopen [13] if $A \subseteq Int(Cl(A))$.
- (iv) β -open [1] if $A \subseteq Cl(Int(Cl(A)))$.

Definition 2. The intersection of all preclosed (resp., semi-closed, α -closed) sets of X containing A is called the preclosure [7] (resp., semi-closure [5], α -closure [17]) of A.

Definition 3 ([19]). The δ -interior of a subset A of X is the union of all regular open sets of X contained in A. The subset A is called δ -open if $A = Int_{\delta}(A)$, i.e. a set is δ -open if it is the union of regular open sets. The complement of a δ -open set is called δ -closed. Alternatively, a set $A \subseteq X$ is called δ -closed if $A = Cl_{\delta}(A)$, where $Cl_{\delta}(A) = \{x \in X : Int(Cl(U)) \cap A \neq \phi, U \in \tau \text{ and } x \in U\}.$

Proposition 1 ([2]). A subset A of a space X is β -open if and only if Cl(A) is regular closed.

Theorem 1 ([1]). Let A be any subset of a space X. Then $A \in \beta O(X)$ if and only if Cl(A) = Cl(Int(Cl(A))).

Theorem 2. Let A be a subset of a topological space (X, τ) . Then:

- (i) If $A \in SO(X)$, then pCl(A) = Cl(A) [6].
- (ii) If $A \in \beta O(X)$, then $\alpha Cl(A) = Cl(A)$ [3].
- (iii) If $A \in \beta O(X)$, then $Cl_{\delta}(A) = Cl(A)$ [20].

Lemma 1 ([8]). Let A be a subset of a space (X, τ) . Then $A \in PO(X, \tau)$ if and only if sCl(A) = Int(Cl(A)).

Proposition 2 ([11]). Let A be any subset of a topological space (X, τ) and γ be an operation on τ . Then the following statements are true:

- (i) $X \setminus \tau_{\gamma} Int(A) = \tau_{\gamma} Cl(X \setminus A).$
- (ii) $X \setminus \tau_{\gamma} Cl(A) = \tau_{\gamma} Int(X \setminus A).$

Definition 4 ([4]). A function $f : (X, \tau) \to (Y, \sigma)$ is said to be γ -continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists a γ -open set U containing x such that $f(U) \subseteq V$.

Definition 5 ([18]). A function $f : (X, \tau) \to (Y, \sigma)$ is called almost continuous at $x \in X$ if for every open set V in Y containing f(x), there exists an open set U in X containing x such that $f(U) \subseteq Int(Cl(V))$. If f is almost continuous at every point of X, then it is called almost continuous.

Definition 6 ([15]). A space X is said to be semi-regular if for any open set U of X and each point $x \in U$, there exists a regular open set V of X such that $x \in V \subseteq U$.

3. Almost γ -Continuous

Definition 7. A function $f : (X, \tau) \to (Y, \sigma)$ is called almost γ -continuous at a point $x \in X$ if for each $x \in X$ and each open set V of Y containing f(x), there exists a γ -open set U of X containing x such that $f(U) \subseteq Int(Cl(V))$. If f is almost γ -continuous at every point of X, then it is called almost γ -continuous.

Remark 1. It easily follows that γ -continuity implies almost γ -continuity and almost γ -continuity implies almost continuity. However, the converses are not true as the following example show.

Example 1. Consider $X = \{a, b, c\}$ with the topology $\tau = \sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Define an operation γ on τ by $\gamma(A) = A$ for all $A \in \tau$. Define a function $f : (X, \tau) \rightarrow (X, \sigma)$ as follows:

$$f(x) = \begin{cases} c & \text{if } x = a \\ b & \text{if } x = b \\ a & \text{if } x = c \end{cases}$$

Then f is almost γ -continuous but not γ -continuous, because $\{a\}$ is an open set in (X, σ) containing f(c) = a, but there exist no γ -open set U in (X, τ) containing c such that $f(U) \subseteq \{a\}$.

And we define an operation γ on τ by $\gamma(A) = X$ for all $A \in \tau$. Then f is almost continuous which is not almost γ -continuous.

Theorem 3. For a function $f : (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

- (i) f is almost γ -continuous.
- (ii) For each $x \in X$ and each open set V of Y containing f(x), there exists a γ -open set U in X containing x such that $f(U) \subseteq sCl(V)$.
- (iii) For each $x \in X$ and each regular open set V of Y containing f(x), there exists a γ -open set U in X containing x such that $f(U) \subseteq V$.
- (iv) For each $x \in X$ and each δ -open set V of Y containing f(x), there exists a γ -open set U in X containing x such that $f(U) \subseteq V$.

Proof. (1) \Rightarrow (2). Let $x \in X$ and Let V be any open set of Y containing f(x). By (1), there exists a γ -open set U of X containing x such that $f(U) \subseteq Int(Cl(V))$. Since V is open and hence V is preopen set. By Lemma 1, Int(Cl(V)) = sCl(V). Therefore, $f(U) \subseteq sCl(V)$.

 $(2) \Rightarrow (3)$. Let $x \in X$ and Let V be any regular open set of Y containing f(x). Then V is an open set of Y containing f(x). By (2), there exists a γ -open set U in X containing x such that $f(U) \subseteq sCl(V)$. Since V is regular open and hence is preopen set. By Lemma 1, sCl(V) = Int(Cl(V)). Therefore, $f(U) \subseteq Int(Cl(V))$. Since V is regular open, then $f(U) \subseteq V$.

 $(3) \Rightarrow (4)$. Let $x \in X$ and Let V be any δ -open set of Y containing f(x). Then for each $f(x) \in V$, there exists an open set G containing f(x) such that $G \subseteq Int(Cl(G)) \subseteq V$. Since Int(Cl(G)) is regular open set of Y containing f(x). By (3), there exists a γ -open set U in X containing x such that $f(U) \subseteq Int(Cl(G)) \subseteq V$. This completes the proof.

(4) ⇒ (1). Let $x \in X$ and Let *V* be any open set of *Y* containing f(x). Then Int(Cl(V)) is δ -open set of *Y* containing f(x). By (4), there exists a γ -open set *U* in *X* containing *x* such that $f(U) \subseteq Int(Cl(V))$. Therefore, *f* is almost γ -continuous.

Theorem 4. For a function $f : (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

- (i) f is almost γ -continuous.
- (ii) $f^{-1}(Int(Cl(V)))$ is γ -open set in X, for each open set V in Y.
- (iii) $f^{-1}(Cl(Int(F)))$ is γ -closed set in X, for each closed set F in Y.
- (iv) $f^{-1}(F)$ is γ -closed set in X, for each regular closed set F of Y.
- (v) $f^{-1}(V)$ is γ -open set in X, for each regular open set V of Y.

Proof. (1) \Rightarrow (2). Let *V* be any open set in *Y*. We have to show that $f^{-1}(Int(Cl(V)))$ is γ -open set in *X*. Let $x \in f^{-1}(Int(Cl(V)))$. Then $f(x) \in Int(Cl(V))$ and Int(Cl(V)) is a regular open set in *Y*. Since *f* is almost γ -continuous. Then by Theorem 3, there exists a γ -open set *U* of *X* containing *x* such that $f(U) \subseteq Int(Cl(V))$. Which implies that $x \in U \subseteq f^{-1}(Int(Cl(V)))$. Therefore, $f^{-1}(Int(Cl(V)))$ is γ -open set in *X*.

(2) \Rightarrow (3). Let *F* be any closed set of *Y*. Then $Y \setminus F$ is an open set of *Y*. By (2), $f^{-1}(Int(Cl(Y \setminus F)))$ is γ -open set in *X* and

$$f^{-1}(Int(Cl(Y \setminus F))) = f^{-1}(Int(Y \setminus Int(F))) = f^{-1}(Y \setminus Cl(Int(F))) = X \setminus f^{-1}(Cl(Int(F)))$$

is γ -open set in X and hence $f^{-1}(Cl(Int(F)))$ is γ -closed set in X.

(3) \Rightarrow (4). Let *F* be any regular closed set of *Y*. Then *F* is a closed set of *Y*. By (3), $f^{-1}(Cl(Int(F)))$ is γ -closed set in *X*. Since *F* is regular closed set. Then

 $f^{-1}(Cl(Int(F))) = f^{-1}(F)$. Therefore, $f^{-1}(F)$ is γ -closed set in X.

(4) \Rightarrow (5). Let *V* be any regular open set of *Y*. Then *Y* \ *V* is regular closed set of *Y* and by (4), we have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is γ -closed set in *X* and hence $f^{-1}(V)$ is γ -open set in *X*.

 $(5) \Rightarrow (1)$. Let $x \in X$ and let V be any regular open set of Y containing f(x). Then

 $x \in f^{-1}(V)$. By (5), we have $f^{-1}(V)$ is γ -open set in X. Therefore, we obtain $f(f^{-1}(V)) \subseteq V$. Hence by Theorem 3, f is almost γ -continuous.

Theorem 5. For a function $f : (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

- (i) f is almost γ -continuous.
- (ii) $f(\tau_{\gamma}-Cl(A)) \subseteq Cl_{\delta}(f(A))$, for each subset A of X.
- (iii) τ_{γ} - $Cl(f^{-1}(B)) \subseteq f^{-1}(Cl_{\delta}(B))$, for each subset B of Y.
- (iv) $f^{-1}(F)$ is γ -closed set in *X*, for each δ -closed set *F* of *Y*.
- (v) $f^{-1}(V)$ is γ -open set in X, for each δ -open set V of Y.
- (vi) $f^{-1}(Int_{\delta}(B)) \subseteq \tau_{\gamma}$ -Int $(f^{-1}(B))$, for each subset B of Y.
- (vii) $Int_{\delta}(f(A)) \subseteq f(\tau_{\gamma}-Int(A))$, for each subset A of X.

Proof. (1) \Rightarrow (2). Let *A* be a subset of *X*. Since $Cl_{\delta}(f(A))$ is δ -closed set in *Y*, it is denoted by $\cap \{F_{\alpha} : F_{\alpha} \in RC(Y), \alpha \in \Delta\}$, where Δ is an index set. Then, we have $A \subseteq f^{-1}(Cl_{\delta}(f(A))) =$ $f^{-1}(\cap \{F_{\alpha} : \alpha \in \Delta\}) = \cap \{f^{-1}(F_{\alpha}) : \alpha \in \Delta\}$. By (1) and Theorem 4, $f^{-1}(Cl_{\delta}(f(A)))$ is γ -closed set of *X*. Hence τ_{γ} -*Cl*(*A*) $\subseteq f^{-1}(Cl_{\delta}(f(A)))$. Therefore, we obtain $f(\tau_{\gamma}$ -*Cl*(*A*)) $\subseteq Cl_{\delta}(f(A))$. (2) \Rightarrow (3). Let *B* be any subset of *Y*. Then $f^{-1}(B)$ is a subset of *X*. By (2), we have $f(\tau_{\gamma} - Cl(f^{-1}(B))) \subseteq Cl_{\delta}(f(f^{-1}(B))) = Cl_{\delta}(B)$. Hence $\tau_{\gamma} - Cl(f^{-1}(B)) \subseteq f^{-1}(Cl_{\delta}(B))$. (3) \Rightarrow (4). Let *F* be any δ -closed set of *Y*. By (3), we have $\tau_{\gamma} - Cl(f^{-1}(F))) \subseteq f^{-1}(Cl_{\delta}(F)) = f^{-1}(F)$ and hence $f^{-1}(F)$ is γ -closed set in X. $(4) \Rightarrow (5)$. Let V be any δ -open set of Y. Then $Y \setminus V$ is δ -closed set of Y and by (4), we have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is γ -closed set in X. Hence $f^{-1}(V)$ is γ -open set in X. $(5) \Rightarrow (6)$. For each subset *B* of *Y*. We have $Int_{\delta}(B) \subseteq B$. Then $f^{-1}(Int_{\delta}(B)) \subseteq f^{-1}(B)$. By (5), $f^{-1}(Int_{\delta}(B))$ is γ -open set in X. Then $f^{-1}(Int_{\delta}(B)) \subseteq \tau_{\gamma}$ - $Int(f^{-1}(B))$. (6) \Rightarrow (7). Let A be any subset of X. Then f(A) is a subset of Y. By (6), we obtain that $f^{-1}(Int_{\delta}(f(A))) \subseteq \tau_{\gamma}$ -Int $(f^{-1}(f(A)))$. Hence $f^{-1}(Int_{\delta}(f(A))) \subseteq \tau_{\gamma}$ -Int(A). Which implies that $Int_{\delta}(f(A)) \subseteq f(\tau_{\gamma}-Int(A))$. $(7) \Rightarrow (1)$. Let $x \in X$ and V be any regular open set of Y containing f(x). Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is a subset of X. By (7), we get $Int_{\delta}(f(f^{-1}(V))) \subseteq f(\tau_{\gamma} - Int(f^{-1}(V)))$ implies that $Int_{\delta}(V) \subseteq f(\tau_{\gamma} - Int(f^{-1}(V)))$. Since V

is regular open set and hence is δ -open set, then $V \subseteq f(\tau_{\gamma}-Int(f^{-1}(V)))$ this implies that $f^{-1}(V) \subseteq \tau_{\gamma}-Int(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is γ -open set in X which contains x and clearly $f(f^{-1}(V)) \subseteq V$. Hence, by Theorem 3, f is almost γ -continuous.

Theorem 6. For a function $f : (X, \tau) \rightarrow (Y, \sigma)$, the following properties are equivalent:

- (i) f is almost γ -continuous.
- (ii) τ_{Y} - $Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$, for each β -open set V of Y.

- (iii) $f^{-1}(Int(F)) \subseteq \tau_{\gamma}$ -Int $(f^{-1}(F))$, for each β -closed set F of Y.
- (iv) $f^{-1}(Int(F)) \subseteq \tau_{\gamma}$ -Int $(f^{-1}(F))$, for each semi-closed set F of Y.
- (v) τ_{γ} - $Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$, for each semi-open set V of Y.

Proof. (1) \Rightarrow (2). Let *V* be any β -open set of *Y*. It follows from Proposition 1, that Cl(V) is regular closed set in *Y*. Since *f* is almost γ -continuous. Then by Theorem 4, $f^{-1}(Cl(V))$ is γ -closed set in *X*. Therefore, we obtain τ_{γ} - $Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$.

(2) \Leftrightarrow (3). Let *F* be any β -closed set of *Y*. Then $Y \setminus F$ is β -open set of *Y* and by (2), we have

$$\begin{aligned} \tau_{\gamma} - Cl(f^{-1}(Y \setminus F)) &\subseteq f^{-1}(Cl(Y \setminus F)) \Leftrightarrow \tau_{\gamma} - Cl(X \setminus f^{-1}(F)) \\ &\subseteq f^{-1}(Y \setminus Int(F)) \Leftrightarrow X \setminus \tau_{\gamma} - Int(f^{-1}(F)) \subseteq X \setminus f^{-1}(Int(F)). \end{aligned}$$

Therefore, $f^{-1}(Int(F)) \subseteq \tau_{\gamma}$ - $Int(f^{-1}(F))$.

(3) \Rightarrow (4). This is obvious since every semi-closed set is β -closed set.

(4) \Rightarrow (5). Let *V* be any semi-open set of *Y*. Then *Y* \ *V* is semi-closed set and by (4), we have

$$f^{-1}(Int(Y \setminus V)) \subseteq \tau_{\gamma} - Int(f^{-1}(Y \setminus V)) \Leftrightarrow f^{-1}(Y \setminus Cl(V))$$
$$\subseteq \tau_{\gamma} - Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq X \setminus \tau_{\gamma} - Cl(f^{-1}(V)).$$

Therefore, τ_{γ} - $Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$.

 $(5) \Rightarrow (1)$. Let *F* be any regular closed set of *Y*. Then *F* is semi-open set of *Y*. By (5), we have τ_{γ} - $Cl(f^{-1}(F)) \subseteq f^{-1}(Cl(F)) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is γ -closed set in *X*. Therefore, by Theorem 4, *f* is almost γ -continuous.

Theorem 7. For a function $f : (X, \tau) \rightarrow (Y, \sigma)$ with γ -regular operation γ on τ , the following statements are equivalent:

- (i) f is almost γ -continuous.
- (ii) τ_{γ} -Cl($f^{-1}(V)$) $\subseteq f^{-1}(\alpha Cl(V))$, for each β -open set V of Y.
- (iii) τ_{γ} -Cl($f^{-1}(V)$) $\subseteq f^{-1}(Cl_{\delta}(V))$, for each β -open set V of Y.
- (iv) τ_{γ} - $Cl(f^{-1}(V)) \subseteq f^{-1}(\tau_{\gamma}$ -Cl(V)), for each semi-open set V of Y.
- (v) τ_{γ} -Cl($f^{-1}(V)$) $\subseteq f^{-1}(pCl(V))$, for each semi-open set V of Y.

Proof. (1) \Rightarrow (2). Follows from Theorem 6 and Theorem 2 (2). (2) \Rightarrow (3). This is obvious since $\alpha Cl(V) \subseteq Cl_{\delta}(V)$ in general. (3) \Rightarrow (4) and (4) \Rightarrow (5). Follows from Theorem 2 and the fact $\tau = \tau_{\gamma}$. (5) \Rightarrow (1). Follows from Theorem 6 and Theorem 2 (1).

Corollary 1. For a function $f : X \to Y$ with γ -regular operation γ on τ , the following statements are equivalent:

- (i) f is almost γ -continuous.
- (ii) $f^{-1}(\alpha Int(F)) \subseteq \tau_{\gamma}$ -Int $(f^{-1}(F))$, for each β -closed set F of Y.
- (iii) $f^{-1}(Int_{\delta}(F)) \subseteq \tau_{\gamma}$ -Int $(f^{-1}(F))$, for each β -closed set F of Y.
- (iv) $f^{-1}(\tau_{\gamma}$ -Int $(F)) \subseteq \tau_{\gamma}$ -Int $(f^{-1}(F))$, for each semi-closed set F of Y.
- (v) $f^{-1}(pInt(F)) \subseteq \tau_{\gamma}$ -Int $(f^{-1}(F))$, for each semi-closed set F of Y.

Theorem 8. A function $f : X \to Y$ is almost γ -continuous if and only if $f^{-1}(V) \subseteq \tau_{\gamma}$ -Int $(f^{-1}(Int(Cl(V))))$ for each preopen set V of Y.

Proof. Necessity. Let *V* be any preopen set of *Y*. Then $V \subseteq Int(Cl(V))$ and Int(Cl(V)) is regular open set in *Y*. Since *f* is almost γ -continuous, by Theorem 4, $f^{-1}(Int(Cl(V)))$ is γ open set in *X* and hence we obtain that $f^{-1}(V) \subseteq f^{-1}(Int(Cl(V))) = \tau_{\gamma}$ -Int $(f^{-1}(Int(Cl(V))))$. Sufficiency. Let *V* be any regular open set of *Y*. Then *V* is preopen set of *Y*. By hypothesis, we have $f^{-1}(V) \subseteq \tau_{\gamma}$ -Int $(f^{-1}(Int(Cl(V)))) = \tau_{\gamma}$ -Int $(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is γ -open set in *X* and hence by Theorem 4, *f* is almost γ -continuous.

Corollary 2. A function $f : X \to Y$ is almost γ -continuous if and only if $f^{-1}(V) \subseteq \tau_{\gamma}$ -Int $(f^{-1}(sCl(V)))$ for each preopen set V of Y.

Corollary 3. A function $f : X \to Y$ is almost γ -continuous if and only if τ_{γ} -Cl $(f^{-1}(Cl(Int(F)))) \subseteq f^{-1}(F)$ for each preclosed set F of Y.

Corollary 4. A function $f : X \to Y$ is almost γ -continuous if and only if τ_{γ} -Cl $(f^{-1}(sInt(F))) \subseteq f^{-1}(F)$ for each preclosed set F of Y.

Theorem 9. For a function $f : X \to Y$, the following statements are equivalent:

- (i) f is almost γ -continuous.
- (ii) For each neighborhood V of f(x), $x \in \tau_{\gamma}$ -Int $(f^{-1}(sCl(V)))$.
- (iii) For each neighborhood V of f(x), $x \in \tau_{\gamma}$ -Int $(f^{-1}(Int(Cl(V))))$.

Proof. Follows from Theorem 8 and Corollary 2.

Theorem 10. Let $f : X \to Y$ is an almost γ -continuous function and Let V be any open subset of Y. If $x \in \tau_{\gamma}$ - $Cl(f^{-1}(V)) \setminus f^{-1}(V)$, then $f(x) \in \tau_{\gamma}$ -Cl(V).

Proof. Let $x \in X$ be such that $x \in \tau_{\gamma}$ - $Cl(f^{-1}(V)) \setminus f^{-1}(V)$ and suppose $f(x) \notin \tau_{\gamma}$ -Cl(V). Then there exists a γ -open set H containing f(x) such that $H \cap V = \phi$. Then $Cl(H) \cap V = \phi$ implies $Int(Cl(H)) \cap V = \phi$ and Int(Cl(H)) is regular open set. Since f is almost γ -continuous, by Theorem 3, there exists a γ -open set U in X containing x such that $f(U) \subseteq Int(Cl(H))$. Therefore, $f(U) \cap V = \phi$. However, since $x \in \tau_{\gamma}$ - $Cl(f^{-1}(V))$, $U \cap f^{-1}(V) \neq \phi$ for every γ -open set U in X containing x, so that $f(U) \cap V \neq \phi$. We have a contradiction. It follows that $f(x) \in \tau_{\gamma}$ -Cl(V).

REFERENCES

Theorem 11. If $f : X \to Y$ is almost γ -continuous and $g : Y \to Z$ is continuous and open. Then the composition function $gof : X \to Z$ is almost γ -continuous.

Proof. Let $x \in X$ and W be an open set of Z containing g(f(x)). Since g is continuous, $g^{-1}(W)$ is an open set of Y containing f(x). Since f is almost γ -continuous, there exists a γ -open set U of X containing x such that $f(U) \subseteq Int(Cl(g^{-1}(W)))$. Also, since g is continuous, then we obtain $(gof)(U) \subseteq g(Int(g^{-1}(Cl(W))))$. Since g is open, we obtain $(gof)(U) \subseteq Int(Cl(W))$. Therefore, gof is almost γ -continuous.

Theorem 12. If $f : X \to Y$ is an almost γ -continuous function and Y is semi-regular. Then f is γ -continuous.

Proof. Let $x \in X$ and Let V be any open set of Y containing f(x). By the semi-regularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subseteq V$. Since f is almost γ -continuous. By Theorem 3, there exists a γ -open set U of X containing x such that $f(U) \subseteq G \subseteq V$. Therefore, f is γ -continuous.

References

- M. E. Abd El-Monsef, S. N. El-Deeb, and R.A. Mahmoud. β-open sets and β-continuous mappings, *Bull. Fac. Sci. Assuit. Univ.*, 12 (1), 77-90. 1983
- [2] D. Andrijevic. Semi-preopen sets, Math. Vesnik, 38, 24-36. 1986.
- [3] A.S. Abdulla. On some applications of special subsets in topology, *Ph.D. Thesis, Tanta Univ.*, 1986.
- [4] C.K. Basu, B.M.U. Afsan, and M.K. Ghosh. A class of functions and separation axioms with respect to an operation, *Hacettepe Journal of Mathematics and Statistics*, 38 (2), 103-118. 2009.
- [5] S.G. Crossley and S.K. Hildebrand. Semi-closure, Texas J. Sci., 22, 99-112. 1971.
- [6] J. Dontchev, M. Ganster, and T. Noiri. On p-closed spaces, *Internat. J. Math. and Math. Sci.*, 24 (3), 203-212. 2000.
- [7] S.N. El-Deeb, I.A. Hasanein, A.S. Mashhour, and T. Noiri. On p-regular spaces, Bull. Math. Soc. Sci. Math. R.S. Roum., 27 (4), 311-315. 1983.
- [8] D.S. Jankovic. A note on mappings of extremally disconnected spaces, *Acta Math. Hungar.*, 46 (1-2), 83-92. 1985.
- [9] S. Kasahara. Operation compact spaces, Math. Japonica, 24 (1), 97-105. 1979.
- [10] G.S.S. Krishnan. A new class of semi open sets in a topological space, *Proc. NCMCM, Allied Publishers, New Delhi*, 305-311. 2003.

- [11] G.S.S. Krishnan, and K. Balachandran. On a class of γ -preopen sets in a topological space, *East Asian Math. J.*, 22 (2), 131-149. 2006.
- [12] N. Levine. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1), 36-41. 1963.
- [13] A.S. Mashhour, M.E. Abd El-Monsef, and S.N. El-Deeb. On precontinuous and week precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53, 47-53. 1982.
- [14] O. Njåstad. On some classes of nearly open sets, Pacific J. Math. 15: 961-970 (1965).
- [15] T. Noiri and V. Popa. On Almost β -continuous functions, *Acta Math. Hungar.*, 79 (4), 329-339. 1998.
- [16] H. Ogata. Operation on topological spaces and associated topology, *Math. Japonica*, 36 (1), 175-184. 1991.
- [17] I.L. Reilly and M.K. Vamanmurthy. On α -continuity in topological spaces, *Acta Math. Hungar.*, 45 (1-2), 27-32. 1985.
- [18] M.K. Singal and A.R. Singal. Almost-continuous mappings, Yokohama Math. J. 16, 63– 73. 1968.
- [19] N.V. Velicko. H-closed topological spaces, Amer. Math. Soc. Transl., 78 (2), 103-118. 1968.
- [20] R.H. Yunis. Some equivalent concepts defined by using α-open sets in topological spaces, Zanco J. of Pure and Applied Sciences, 17 (1), 21-26. 2005.