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1. Introduction

The study of generalized closed sets in a topological space was initiated by Levine [11] and

the concept of T1/2 space was introduced. The modified forms of generalized closed sets and

generalized continuity were studied by K. Balachandran, P. Sundaram and H. Maki [3]. M.

Sheik john introduced ω-closed sets and ω -open sets [8]. As generalizations of closed sets,

R-closed were introduced and studied by the same author [9]. The aim of this paper is to

introduce a new class of functions called R-continuous functions. Moreover, the relationships

and properties of R-continuous functions are obtained.

2. Preliminaries

Throughout this paper (X ,τ), (Y,τ) and (Z ,τ) will always denote topological spaces on

which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of

(X ,τ), cl(A), Int(A) denote the closure, the interior of A. We recall some known definitions

needed in this paper.
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Definition 1. Let (X ,τ) be a topological space. A subset A of the space X is said to be

(i) Pre open [13] if A⊆ Int(cl(A)) and preclosed if cl(Int(A))⊆ A.

(ii) Semi open [10] if A⊆ cl(Int(A)) and semiclosed if Int(cl(A))⊆ A.

(iii) α -open [14] if A⊆ Int(cl(Int(A))) and α-closed if cl(Int(cl(A))⊆ A.

(iv) Semi preopen [1] if A⊆ cl((Int(cl(A))) and semi preclosed if Int(cl(Int(A)))⊆ A.

(v) Regular open [7] if A= Int(cl(A)) and regular closed if A= cl(Int(A)).

Definition 2. Let (X ,τ) be a topological space.A subset A⊆X is said to be

(i) a generalized closed set [11] (briefly g-closed) if cl(A) ⊆ U whenever A⊆ U and U is open

in (X ,τ) the complement of a g- closed set is called a g-open set.

(ii) an α-generalized closed set [12] (briefly αg-closed) if αcl(A) ⊆ U whenever A⊆ U and U

is open in (X ,τ) the complement of a αg- closed set is called a αg-open set.

(iii) a generalized semi preclosed set [5] (briefly gsp-closed) if spcl(A)⊆U whenever A⊆ U and

U is open in (X ,τ) the complement of a gsp- closed set is called a gsp-open set.

(iv) an ω-closed set [8] if cl(A) ⊆ U whenever A⊆ U and U is semi open in (X ,τ) the comple-

ment of a ω-closed set is called a ω-open set.

(v) a generalized preclosed set [15] (briefly gp-closed) if αcl(A) ⊆ intU whenever A⊆ U and

U is α-open in (X ,τ) the complement of a gp- closed set is called a gp-open set.

(vi) a generalized pre regular closed set [7] (briefly gpr-closed) if pcl(A) ⊆ U whenever A⊆ U

and U is preopen in (X ,τ) the complement of a gpr- closed set is called a gpr-open set.

Definition 3. A function f : (X ,τ)→ (Y,σ) is called

(i) g-continuous [3] if f −1(V ) is g-closed in (X ,τ) for every closed set V in (Y,σ),

(ii) ω-continuous [8] if f −1(V ) is ω-closed in (X ,τ) for every closed set V in (Y,σ),

(iii) gsp-continuous [5] if f −1(V ) is gsp-closed in (X ,τ) for every closed set V in (Y,σ),

(iv) gp-continuous [2] if f −1(V ) is gp-closed in (X ,τ) for every closed set V in (Y,σ),

(v) gpr-continuous [7] if f −1(V ) is gpr-closed in (X ,τ) for every closed set V in (Y,σ),

(vi) semi pre-continuous [1] if f −1(V ) is semi pre-open in (X ,τ) for every open set V in (Y,σ),

(vii) αg-continuous [12] if f −1(V ) is αg-closed in (X ,τ) for every closed set V in (Y,σ),

(viii) α-continuous [17] if f −1(V ) is α-closed in (X ,τ) for every closed set V in (Y,σ),

(ix) Contra-continuous [6] if f −1(V ) is closed in (X ,τ) for every open set V in (Y,σ),
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(x) ω-irresolute [8] if f −1(V ) is ω-closed in (X ,τ) for every ω- closed set V in (Y,σ).

Definition 4. A space (X ,τ) is called

(i) a T1/2 space [11] if every g-closed set is closed.

(ii) a Tω space [16] if every ω-closed set is closed.

3. R-Continuous Functions

Definition 5. A subset of a topological space (X ,τ) is said to be R-closed in (X ,τ) if

αcl(A)⊆ Int(U) whenever A⊆ U and U is ω-open in (X ,τ).

Definition 6. A function f : (X ,τ)→ (Y,σ) is said to be R-continuous if f −1(V ) is R-closed in

(X ,τ) for every closed set V of (Y,σ).

Example 1. Let X = Y = {a, b, c}, τ = {X ,φ, {a}, {a, b}}, σ == {X ,φ, {a}, {a, c}}. We define

f : (X ,τ)→ (Y,σ) by f (a) = a, f (b) = c, f (c) = b. Then ‘f ’ is R-continuous.

Proposition 1. Every R-continuous is gp continuous but not conversely.

Proof. By [theorem 3.6, 9] every R-closed set is gp-closed, the proof follows.

Converse of the above proposition need not be true as seen from the following example.

Example 2. Let X = Y = {a, b, c}, τ = {X ,φ, {a, b}}, σ = {X ,φ, {a, c}}. Define the function

f : (X ,τ) → (Y,σ) by f (a) = b, f (b) = a, f (c) = c. Then f is gp-continuous but not R-

continuous.Since for the closed set U = {b} in (Y,σ), f −1(U) = {a} is gp-closed but not R-closed

in (X ,τ).

Proposition 2. Every R-continuous is gpr continuous but not conversely.

Proof. By [theorem 3.7, 9] every R-closed set is gpr-closed, the proof follows. Converse of

the above proposition need not be true as seen from the following example.

Example 3. Let X = Y = {a, b, c}, τ = {X ,φ, {a, b}}, σ = {X ,φ, {a, c}}. Define the function

f : (X ,τ) → (Y,σ) by f (a) = b, f (b) = c, f (c) = a. Then f is gp-continuous but not R-

continuous.Since for the closed set U = {b}in(Y,σ), f −1(U) = {a} is gpr-closed but not R-closed

in (X ,τ).

Proposition 3. Every R-continuous is gsp continuous but not conversely.

Proof. By [theorem 3.5, 9] every R-closed set is gsp-closed, the proof follows. Converse of

the above proposition need not be true as seen from the following example.

Example 4. Let X = Y = {a, b, c}, τ = {X ,φ, {a, c}}, σ = {X ,φ, {a, b}}. Define the function

f : (X ,τ) → (Y,σ) by f (a) = c, f (b) = a, f (c) = b. Then f is gsp-continuous but not R-

continuous.Since for the closed set U = {c} in (Y,σ), f −1(U) = {a} is gsp-closed but not R-closed

in (X ,τ).
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Proposition 4. Every R-continuous is αg-continuous but not conversely.

Proof. By [theorem 3.3, 9] every R-closed set is αg-closed, the proof follows. Converse of

the above proposition need not be true as seen from the following example.

Example 5. Let X = Y = {a, b, c}, τ = {X ,φ, {a}, {b, c}}, σ = {X ,φ, {a, b}}. Define the

function f : (X ,τ) → (Y,σ) by f (a) = b, f (b) = c, f (c) = a. Then f is αg -continuous but

not R-continuous. Since for the closed set U = {c}in(Y,σ), f −1(U) = {b} is αg-closed but not

R-closed in (X ,τ).

Proposition 5. The following example show that R-continuity is independent of continuity. Let

X = Y = {a, b, c}, τ= {X ,;, {b}, {a, b}}, σ = {X ,;, {a, c}}. Define the function

f : (X ,τ)→ (Y,σ) by f (a) = a, f (b) = b, f (c) = b. Since for the closed set U = {b} in (Y,σ),

f −1(U) = {b, c} is R-closed but not closed in (X ,τ). Let X = Y = {a, b, c},
τ= {X ,;, {b}, {c}, {b, c}}, σ = {X ,;, {a, b}}. Define the function f : (X ,τ)→ (Y,σ) by

f (a) = c, f (b) = a, f (c) = b. Since for the closed set U = {c} in (Y,σ), f −1(U) = {a} is closed

but not R-closed in (X ,τ).

Proposition 6. The following example show that R-continuity is independent of g-continuity. Let

X = Y = {a, b, c}, τ= {X ,;, {a}, {a, c}}, σ = {X ,;, {b, c}}. Define the function

f : (X ,τ)→ (Y,σ) by f (a) = b, f (b) = a, f (c) = c. Since for the closed set U = {a} in (Y,σ),

f −1(U) = {b} is g-closed but not R-closed in (X ,τ). Let X = Y = {a, b, c},
τ = {X ,;, {a}, {a, b}},σ = {X ,;, {b, c}}. Define the function f : (X ,τ)→ (Y,σ) by f (a) = b,

f (b) = a, f (c) = c. Since for the closed set U = {a} in (Y,σ), f −1(U) = {b} is R-closed but not

g-closed in (X ,τ).

Proposition 7. The following example show that R-continuity is independent of pre-continuity.

Let X = Y = {a, b, c}, τ = {X ,;, {a}}, σ = {X ,;, {b}}. Define the function f : (X ,τ)→ (Y,σ)

by f (a) = a, f (b) = c, f (c) = b. Since for the closed set U = {a, c} in (Y,σ), f −1(U) = {a, b} is

R-closed but not pre-closed in (X ,τ). Let X = Y = {a, b, c}, τ= {X ,;, {a, b}}, σ = {X ,;, {a, c}}.
Define the function f : (X ,τ)→ (Y,σ) by f (a) = b, f (b) = c, f (c) = a. Since for the closed set

U = {b} in (Y,σ), f −1(U) = {a} is pre-closed but not R-closed in (X ,τ).

Proposition 8. The following example show that R-continuity is independent of α-continuity. Let

X = Y = {a, b, c}, τ = {X ,;, {a}}, σ = {X ,;, {c}}. Define the function f : (X ,τ)→ (Y,σ) by

f (a) = b, f (b) = a, f (c) = c. Since for the closed set U = {a, b} in (Y,σ), f −1(U) = {a, b} is

R-closed but not α-closed in (X ,τ). Let X = Y = {a, b, c}, τ = {X ,;, {b, c}}, σ = {X ,;, {a, b}}.
Define the function f : (X ,τ) → (Y,σ) by f (a) = c, f (b) = a, f (c) = b. Since for the closed

set U = {c} in (Y,σ), f −1(U) = {a} is α-closed but not R-closed in (X ,τ). From the above

discussions and known results we have the following implications. A→ B (A= B) represents A

implies B but not conversely (A and B are independent of each other).
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Figure 1: Functional relationships.

4. Characterizations of R-continuous Functions.

Now we shall obtain characterizations of R-continuous functions in the sense of definition

1.

Theorem 1. A function f : (X ,τ)→ (Y,σ) is R-continuous if and only if f −1(U) is R-open in

(X ,τ) for every open set U in (Y,σ).

Proof. Let f : (X ,τ)→ (Y,σ) be R-continuous and U be an open set in (Y,σ). Hence U c is

closed in (Y,σ). Since f is R-continuous f −1(U c) is R-closed in (X ,τ). Therefore

[ f −1(U c)]c = f −1(U) is R-open in (X ,τ). Converse is similar.

Remark 1. The composition of two R-continuous functions need not be R-continuous and this

can be shown by the following example. By [remark 6.3, 9], composition of two R-continuous

functions need not be R-continuous.

Definition 7. A space (X ,τ) is said to be TR-space if every R-closed set is closed.

Theorem 2. If (X ,τ) and (Z ,ζ) be topological spaces and (Y,σ) be TR-space then the composi-

tion g ◦ f : (X ,τ)→ (Z ,ζ) of R-continuous functions f : (X ,τ)→ (Y,σ) and g : (Y,σ)→ (Z ,ζ)

is R-continuous.

Proof. Let G be any closed set of (Z ,ζ). Then by assumption g−1(G) is closed in (Y,σ).

Hence f −1(g−1(G)) = (g ◦ f )−1(G) is R-closed in (X ,τ). Thus g ◦ f is R-continuous.

Theorem 3. Let (X ,τ) and (Z ,ζ) be any topological spaces and (Y,σ) be T1/2 space (respectively

Tω space). Then the composition g ◦ f : (X ,τ) → (Z ,ζ) of R-continuous f : (X ,τ) → (Y,σ)

and g-continuous function g : (Y,σ)→ (Z ,ζ) (respectivelyω-continuous) is R-continuous.
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Proof. Let G be any closed set of (Z ,ζ). Then g−1(G) is g-closed in (Y,σ) and by as-

sumption, g−1(G) is closed in (Y,σ). Since f is R-continuous f −1(g−1(G)) = (g ◦ f )−1(G) is

R-closed in (X ,τ).Thus g ◦ f is R-continuous.

Theorem 4. If f : (X ,τ)→ (Y,σ) is R-continuous and g : (Y,σ)→ (Z ,ζ) is continuous. Then

their composition g ◦ f : (X ,τ)→ (Z ,ζ) is R-continuous.

Proof. Let G be closed in (Z ,ζ). Thus g−1(G) is closed in (Y,σ). Since f is R-continuous

f −1(g−1(G)) = (g ◦ f )−1(G) is R-closed in (X ,τ). Thus g ◦ f is R-continuous.

Theorem 5. If f : (X ,τ)→ (Y,σ) is continuous and contra α-continuous and

g : (Y,σ)→ (Z ,ζ) is contra continuous, then g ◦ f : (X ,τ)→ (Z ,ζ) is R-continuous.

Proof. Let G be any closed set of (Z ,ζ). Since g is contra continuous g−1(G) is open in

(Y,σ). Since f is continuous and contra α-continuous, f −1(g−1(G)) = (g ◦ f )−1(G) is open

and α-closed in (X ,τ). Then by [theorem 3.2, 9] we get the proof.

Theorem 6. If f : (X ,τ)→ (Y,σ) is R-irresolute and g : (Y,σ)→ (Z ,ζ) is R-continuous then

g ◦ f : (X ,τ)→ (Z ,ζ) is R-continuous.

Proof. Let G be any closed set of (Z ,ζ). Since g is R-continuous g−1(G) is R-closed in

(Y,σ) . Since f is R-irresolute f −1(g−1(G)) = (g ◦ f )−1(G) is R-closed in (X ,τ). Thus g ◦ f is

R-continuous.

Definition 8. Let x be a point of (X ,τ) and V be subset of X . Then V is called a R-neighbourhood

of x in (X ,τ) if there exist a R-open set U of (X ,τ) such that x ∈ U ⊆ V .

Theorem 7. Let f : (X ,τ)→ (Y,σ) be a function. Then the following statements are equivalent.

(i) The function f is R continuous.

(ii) The inverse of each open set in (Y,σ) is R-open in (X ,τ).

(iii) The inverse of each closed set in (Y,σ) is R-closed in (X ,τ).

(iv) For each x in (X ,τ) the inverse of every neighbourhood of f (x) is a R-neighbourhood of x.

(v) For each x in (X ,τ) and each neighbourhood N of f (x) there is a R-neighbourhood W of x

such that f (W )⊆ N.

(vi) For each subset A of (X ,τ), f (Rcl(A))⊆ cl( f (A)).

(vii) For each subset B of (Y,σ), Rcl( f −1(B))⊆ f −1(cl(B)).
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Proof. i⇔ii

This follows from theorem 1.

ii⇔iii. This proof is clear from the result f −1(Ac) = ( f −1(A))c.

ii⇔iv. Assume ii. For x ∈ (X ,τ), let N be a neighbourhood of f (x). Then there exist an

open set V in (Y,σ) such that f (x) ∈ V ⊆ N . Consequently f −1(V ) is R-open set in (X ,τ) and

x ∈ f −1(V )⊆ f −1(N). Thus f −1(N) is an R-neighbourhood of x.

Assume iv. Let U be open in (Y,σ). Let x ∈ U . Then by assumption f −1(U) is a R-

neighbourhood of X. Thus f −1(U) is open in (X ,τ).

iv⇔v. Let x ∈ (X ,τ). Let N be a neighbourhood of f (x). ⇔ W = f −1(N) is a R-

neighbourhood of x and f (W ) = f ( f −1(N))⊆ N .

vi⇔iii. Suppose iii holds. Let A be a subset of (X ,τ). Since

A⊆ f −1( f (A)), A⊆ f −1(cl( f (A))). But f −1(cl( f (A))) is a closed set, by assumption

f −1(cl( f (A))) is a R-closed set containing A.

Consequently, R(cl(A))⊆ f −1(cl( f (A))). Thus f (R(cl(A))⊆ cl( f (A)). Conversely iv holds.

Let F be a closed subset of (Y,σ). Hence f (R(cl( f −1(F)))) ⊆ cl( f ( f −1(F))) ⊆ cl(F) = F .

Hence R(cl( f −1(F)))⊆ f −1(F). Thus f −1(F) is a R-closed set in (X ,τ).

vi⇔vii. Suppose vi holds. Let B be any subset of (Y,σ). Replacing A by f −1(B) in vi we

get, f (R− cl( f −1(B)) ⊆ cl( f ( f −1(B)) ⊆ cl(B). Thus R− cl( f −1(B)) ⊆ f −1(cl(B)). Suppose

vii holds. Let B = f (A) where A is a subset of (X ,τ).

Then R− cl(A)⊆ R− cl( f −1(B))⊆ f −1(cl( f (A)). Thus f (R− cl(A)⊆ cl f (A).

This completes the proof of the theorem.

Proposition 9. If A is any R-closed set in (X ,τ) and if f : (X ,τ)→ (Y,σ) is ω-irresolute, open

and α-closed then f (A) is R-closed in (Y,σ).

Proof. Let U be any ω-open in (Y,σ) such that f (A) ⊆ U . Then A ⊆ f −1(U). Since

f is ω-irresolute and A is R-closed in (X ,τ), α − cl(A) ⊆ int( f −1(U)). Since f is open,

f (int( f −1(U)))⊆ int(U). Thus f (αcl(A))⊆ int(U). Hence

αcl( f (A))⊆ αcl( f (αcl(A))) = f (αcl(A)⊆ int(U). Thus f (A) is R-closed in (Y,σ).

Theorem 8. If A is R-closed(respectively R-open) subset of (Y,σ), f : (X ,τ)→ (Y,σ) is a bijec-

tion,continuous and ω-open mappings,then f −1(A) is R-closed (respectively R-open) in (X ,τ).

Proof. Let U beω-open in (X ,τ) such that f −1(A)⊆ U . Then A⊆ f (U). Since A is R-closed

in (Y,σ), αcl(A⊆)int( f (U)). Since f is a bijection and continuous,

f −1(αcl(A))⊆ f −1(int( f (U)))⊆ int( f −1( f (U)) = int(U). Now

αcl( f −1(A)) ⊆ αcl( f −1(αcl(A))) = f −1(αcl(A)) ⊆ int(U). Thus f −1(A) is R-closed in (X ,τ).

By taking complements we can show that if A is R-open in (Y,σ), f −1(A) is R-open in (X ,τ).

Definition 9. The intersection of all R-closed sets each containing a set A in a topological space

X is called the R-closure of A and is denoted by R− cl(A).

Theorem 9. Let A be a subset of (X ,τ). Then xεR− cl(A) if and only if for any R-neighbourhood

Nx of x in (X ,τ), A
⋂

Nx = φ.
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Proof. Assume x ∈ R− cl(A). Suppose that there exists a neighbourhood Nx of x such that

A
⋂

Nx 6= ;. Since Nx is a R-neighbourhood of x in (X ,τ), there exist a R-open set Vx such

that x ∈ Vx ⊆ Nx . Hence A
⋂

Vx = ;. Thus A ⊆ V c
x . Since V c

x is a R-closed set containing

A, we get R− cl(A) ⊆ V c
x . ⇒ x /∈ R− cl(A). Which is a contradiction. Assume that for each

R-neighbourhood Nx of x in (X ,τ), A
⋂

Nx = ;. Suppose x ∈ R− cl(A) then there exist a

R-closed set V of (X ,τ) such that A⊆ V and x ∈ V . Thus x ∈ V c and V c is R-open in (X ,τ).

But A∈ V c = ;. Which is a contradiction.

Theorem 10. (i) If f : (X ,τ) → (Y,σ) is α-continuous and contra continuous then f is R-

continuous.

(ii) If f : (X ,τ)→ (Y,σ) is αg-continuous and contra continuous then f is R-continuous.

Proof. Let V be closed in (Y,σ). Since f is α-continuous and contra continuous f −1(V )

is α-closed and open in (X ,τ). By [theorem 3.2, 9] f −1(V ) is R-closed in (X ,τ). Let V be

closed in (Y,σ). Since f is αg-continuous and contra continuous f −1(V ) is αg closed and open

in (X ,τ). By [theorem 2.5.28, 8] f −1(V ) is α-closed and open in (X ,τ). Hence f −1(V ) is

R-closed.

Theorem 11. If f : (X ,τ)→ (Y,σ) is R-irresolute and g : (Y,σ)→ (Z ,ζ) is R-irresolute then

g ◦ f : (X ,τ)→ (Z ,ζ) is R-irresolute.

Proof. Let G be R-closed in (Z ,ζ). Since g is R-irresolute, g−1(G) is R-closed in (Y,σ).

Since f is R-irresolute f −1(g−1(G)) = (g ◦ f )−1(G) is R-closed in (X ,τ). Thus g ◦ f is R-

irresolute.

5. R-Compact and R-Connected Spaces

Definition 10. A topological space (X ,τ) is R-compact if every R-open cover of X has a finite

subcover.

Definition 11. A topological space (X ,τ) is R-connected if X cannot be written as the disjoint

union of two nonempty R-open sets.

Theorem 12. Let f : (X ,τ)→ (Y,σ) is surjective, R-continuous functions. If X is compact then

Y is compact.

Proof. Let {(Ai)/i ( I} be an open cover of Y. Then { f −1(Ai)/iεI} is a R-open cover of X.

Since X is R-compact, it has a finite subcover say { f −1(A1), f −1(A2), f −1(A3), . . . { f
−1(An)}.

Since f is surjective, {A1,A2, . . . An} is a finite subcover of Y and Y is compact.

Theorem 13. Let f : (X ,τ)→ (Y,σ) is surjective, R-continuous (R-irresolute) functions. If X is

R-connected then Y is connected (R-connected).
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Proof. Suppose Y is not connected (R-connected).Then Y = AUB where AnB 6= ;, A 6= ;,
B 6= ; and A, B are open(R-open)sets in Y. Since f is surjective, f (X ) = Y and since f is R-

continuous(R-irresolute), X = f −1(A) U f −1(B) is disjoint non empty R-open sets of X. Thus a

contradiction that X is R-connected.

Definition 12. A subset of a space X is called R-compact relative to X if every collection

{Ui/i ⊂ I} of R-open subsets of X such that A⊂
⋃

i∈i Ui there exist a finite subset I0 of I such that

A⊂
⋃

i∈i0
Ui .

Theorem 14. Every R-closed subset of a R-compact space X is R-compact relative to X.

Proof. Let A be a R-closed subset of a R-compact space X. Let {Ui/i ∈ I} be a cover of

A by R-open subsets of X. Hence A ⊆
⋃

i∈i Ui and then (X\A)
⋃
(
⋃

i∈i Ui) = X . Since X is R-

compact,there exist a finite subset I0 of I such that (X\A)
⋃
(
⋃

i∈i0
Ui) = X . Thus A⊆

⋃
i∈i0

Ui .

Hence A is R-compact relative to X.

Proposition 10. An R-closed subset of αGO-compact space is αGO-compact relative to (X ,τ).

Proof. By [theorem 3.3, 9] every R-closed set is αg-closed and since a g-closed subset of a

αGO-compact space is αGO-compact relative to (X ,τ) [4], the result follows.

Proposition 11. If a map f : (X ,τ)→ (Y,σ) is R-irresolute and a subset B is R-compact relative

to (X ,τ), then the image f (B) is R-compact relative to (Y,σ)

Proof. Let {Ai/i ∈ I} be any collection of R-open sets of (Y,σ) such that f (B) ê
⋃

i∈i Ai .

Then B ⊆
⋃

i∈i f −1(Ai). By hypothesis,there exists a finite subset I0 of I such that

B ⊆
⋃

i∈i0
f −1(Ai) and so f (B) is R-compact relative to (Y,σ).

Proposition 12. If (X ,τ) is a TR-space and connected then (X ,τ) is R-connected.

Proof. If (X ,τ) is not R-connected,then X = A
⋃

B where A and B are disjoint non empty

R-open sets. Since (X ,τ) is a TR-space, we get a contradiction to the connectedness of (X ,τ).

Proposition 13. If f : (X ,τ)→ (Y,σ) is an R-continuous surjection and (X ,τ) is R-connected,then

(Y,σ) is connected.

Proof. Suppose that Y = AUB, where A and B are disjoint nonempty open sets of (Y,σ).

Since f is R-continuous and onto, X = f −1(A)U f −1(B) where f −1(A) and f −1(B) are disjoint

nonempty R-open sets in (X ,τ). This contradicts the fact that (X ,τ) is R-connected and so

(Y,σ) is connected.

Theorem 15. For a topological space (X ,τ), the following are equivalent:

(i) (X ,τ) is R-connected.

(ii) The only subsets of (X ,τ) which are both R-open and R-closed are the empty set ; and X.
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(iii) Each R-continuous map of (X ,τ) into a discrete space (Y,σ) with at least two points is a

constant map.

Proof. i ⇒ii. Let U be an R-open and R-closed subsets of (X ,τ). Then U c is both R-

open and R-closed in (X ,τ). Hence (X ,τ) is the disjoint union of R-open sets U and U c , by

assumption one of these must be empty. Thus U = ; or U = X .

ii⇒i. Suppose X = AUB where A and B are disjoint nonempty R-open subsets of (X ,τ).

Then A is both R-open and R-closed subsets of (X ,τ). Hence by assumption A= ; or X. Thus

(X ,τ) is R-connected.

ii⇒iii. Let f : (X ,τ)→ (Y,σ) be an R-continuous map. Then (X ,τ) is covered by R-open

and R-closed covering { f −1(y)/y ∈ Y }. By assumption f −1(y) = ; or X for each y ∈ Y . If

f −1(y) = ; for each y ∈ Y ,then f fails to be a map which shows that f is a constant map.

iii⇒ii. Let U be both R-open and R-closed in (X ,τ). Suppose that U 6= ;. Define

f : (X ,τ) → (Y,σ) by f (U) = {y1} and f (U c) = {y2} for some distinct points y1 and y2 in

(Y,σ) then f is an R-continuous map.By assumption f is a constant map. Thus y1 = y2 and

U = X .
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