Vol. 2, No. 1, 2013, 115-125 ISSN 2147-5512 – www.ejmathsci.com

On R-continuous Functions

Dr J. Antony Rex Rodrigo¹, P. Krishna^{2,*}

¹ Department of Mathematics, V.O. Chidambaram College, Thoothukudi, Tamil Nadu, India

² Department of Mathematics, Cape Institute of Technology, Levengipuram, Tirunelveli District, Tamil Nadu, India

Abstract. In this paper, we introduce a new class of continuous functions as an application of R-closed sets namely R-continuous functions and study their properties in topological spaces. We introduce TR spaces, R-neighbourhood and analyze their properties in this paper. Also we introduce R-compact spaces and R-connected spaces.

2010 Mathematics Subject Classifications: 54C10,54C08,54C05

Key Words and Phrases: R-closed set, R-open set, R-continuous function, R-irresolute, R-compact space, R-connected space.

1. Introduction

The study of generalized closed sets in a topological space was initiated by Levine [11] and the concept of $T_{1/2}$ space was introduced. The modified forms of generalized closed sets and generalized continuity were studied by K. Balachandran, P. Sundaram and H. Maki [3]. M. Sheik john introduced ω -closed sets and ω -open sets [8]. As generalizations of closed sets, R-closed were introduced and studied by the same author [9]. The aim of this paper is to introduce a new class of functions called R-continuous functions. Moreover, the relationships and properties of R-continuous functions are obtained.

2. Preliminaries

Throughout this paper (X, τ) , (Y, τ) and (Z, τ) will always denote topological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of (X, τ) , cl(A), Int(A) denote the closure, the interior of A. We recall some known definitions needed in this paper.

http://www.ejmathsci.com

^{*}Corresponding author.

Email addresses: antonyrexrodrigo@yahoo.co.in (J. Antony), krishnanagalingam@gmail.com P.Krishna)

Definition 1. Let (X, τ) be a topological space. A subset A of the space X is said to be

- (i) Pre open [13] if $A \subseteq Int(cl(A))$ and preclosed if $cl(Int(A)) \subseteq A$.
- (ii) Semi open [10] if $A \subseteq cl(Int(A))$ and semiclosed if $Int(cl(A)) \subseteq A$.
- (iii) α -open [14] if $A \subseteq Int(cl(Int(A)))$ and α -closed if $cl(Int(cl(A)) \subseteq A$.
- (iv) Semi preopen [1] if $A \subseteq cl((Int(cl(A))))$ and semi preclosed if $Int(cl(Int(A))) \subseteq A$.
- (v) Regular open [7] if A = Int(cl(A)) and regular closed if A = cl(Int(A)).

Definition 2. Let (X, τ) be a topological space. A subset $A \subseteq X$ is said to be

- (i) a generalized closed set [11] (briefly g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) the complement of a g- closed set is called a g-open set.
- (ii) an α -generalized closed set [12] (briefly α g-closed) if α cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) the complement of a α g- closed set is called a α g-open set.
- (iii) a generalized semi preclosed set [5] (briefly gsp-closed) if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) the complement of a gsp- closed set is called a gsp-open set.
- (iv) an ω -closed set [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X, τ) the complement of a ω -closed set is called a ω -open set.
- (v) a generalized preclosed set [15] (briefly gp-closed) if $\alpha cl(A) \subseteq intU$ whenever $A \subseteq U$ and U is α -open in (X, τ) the complement of a gp- closed set is called a gp-open set.
- (vi) a generalized pre regular closed set [7] (briefly gpr-closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is preopen in (X, τ) the complement of a gpr- closed set is called a gpr-open set.

Definition 3. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called

- (i) g-continuous [3] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V in (Y, σ) ,
- (ii) ω -continuous [8] if $f^{-1}(V)$ is ω -closed in (X, τ) for every closed set V in (Y, σ) ,
- (iii) gsp-continuous [5] if $f^{-1}(V)$ is gsp-closed in (X, τ) for every closed set V in (Y, σ) ,
- (iv) gp-continuous [2] if $f^{-1}(V)$ is gp-closed in (X, τ) for every closed set V in (Y, σ) ,
- (v) gpr-continuous [7] if $f^{-1}(V)$ is gpr-closed in (X, τ) for every closed set V in (Y, σ) ,
- (vi) semi pre-continuous [1] if $f^{-1}(V)$ is semi pre-open in (X, τ) for every open set V in (Y, σ) ,
- (vii) ag-continuous [12] if $f^{-1}(V)$ is ag-closed in (X, τ) for every closed set V in (Y, σ) ,
- (viii) α -continuous [17] if $f^{-1}(V)$ is α -closed in (X, τ) for every closed set V in (Y, σ) ,
- (ix) Contra-continuous [6] if $f^{-1}(V)$ is closed in (X, τ) for every open set V in (Y, σ) ,

(x) ω -irresolute [8] if $f^{-1}(V)$ is ω -closed in (X, τ) for every ω - closed set V in (Y, σ) .

Definition 4. A space (X, τ) is called

- (i) a $T_{1/2}$ space [11] if every g-closed set is closed.
- (ii) a T_{ω} space [16] if every ω -closed set is closed.

3. R-Continuous Functions

Definition 5. A subset of a topological space (X, τ) is said to be R-closed in (X, τ) if $\alpha cl(A) \subseteq Int(U)$ whenever $A \subseteq U$ and U is ω -open in (X, τ) .

Definition 6. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be *R*-continuous if $f^{-1}(V)$ is *R*-closed in (X, τ) for every closed set *V* of (Y, σ) .

Example 1. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}, \sigma == \{X, \phi, \{a\}, \{a, c\}\}$. We define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = c, f(c) = b. Then 'f' is *R*-continuous.

Proposition 1. Every *R*-continuous is gp continuous but not conversely.

Proof. By [theorem 3.6, 9] every R-closed set is gp-closed, the proof follows. Converse of the above proposition need not be true as seen from the following example.

Example 2. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a, b\}\}, \sigma = \{X, \phi, \{a, c\}\}$. Define the function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Then f is gp-continuous but not R-continuous. Since for the closed set $U = \{b\}$ in $(Y, \sigma), f^{-1}(U) = \{a\}$ is gp-closed but not R-closed in (X, τ) .

Proposition 2. Every R-continuous is gpr continuous but not conversely.

Proof. By [theorem 3.7, 9] every R-closed set is gpr-closed, the proof follows. Converse of the above proposition need not be true as seen from the following example.

Example 3. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a, b\}\}, \sigma = \{X, \phi, \{a, c\}\}$. Define the function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Then f is gp-continuous but not R-continuous. Since for the closed set $U = \{b\}in(Y, \sigma), f^{-1}(U) = \{a\}$ is gpr-closed but not R-closed in (X, τ) .

Proposition 3. Every R-continuous is gsp continuous but not conversely.

Proof. By [theorem 3.5, 9] every R-closed set is gsp-closed, the proof follows. Converse of the above proposition need not be true as seen from the following example.

Example 4. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a, c\}\}, \sigma = \{X, \phi, \{a, b\}\}$. Define the function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c, f(b) = a, f(c) = b. Then f is gsp-continuous but not R-continuous. Since for the closed set $U = \{c\}$ in $(Y, \sigma), f^{-1}(U) = \{a\}$ is gsp-closed but not R-closed in (X, τ) .

Proposition 4. Every *R*-continuous is αg -continuous but not conversely.

Proof. By [theorem 3.3, 9] every R-closed set is αg -closed, the proof follows. Converse of the above proposition need not be true as seen from the following example.

Example 5. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}, \sigma = \{X, \phi, \{a, b\}\}$. Define the function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Then f is αg -continuous but not R-continuous. Since for the closed set $U = \{c\}in(Y, \sigma), f^{-1}(U) = \{b\}$ is αg -closed but not R-closed in (X, τ) .

Proposition 5. The following example show that R-continuity is independent of continuity. Let $X = Y = \{a, b, c\}, \tau = \{X, \emptyset, \{b\}, \{a, b\}\}, \sigma = \{X, \emptyset, \{a, c\}\}$. Define the function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = b. Since for the closed set $U = \{b\}$ in (Y, σ) , $f^{-1}(U) = \{b, c\}$ is R-closed but not closed in (X, τ) . Let $X = Y = \{a, b, c\}, \tau = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}, \sigma = \{X, \emptyset, \{a, b\}\}$. Define the function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c, f(b) = a, f(c) = b. Since for the closed set $U = \{c\}$ in $(Y, \sigma), f^{-1}(U) = \{a\}$ is closed but not R-closed in (X, τ) .

Proposition 6. The following example show that R-continuity is independent of g-continuity. Let $X = Y = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{a, c\}\}, \sigma = \{X, \emptyset, \{b, c\}\}$. Define the function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Since for the closed set $U = \{a\}$ in $(Y, \sigma), f^{-1}(U) = \{b\}$ is g-closed but not R-closed in (X, τ) . Let $X = Y = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}\}, \sigma = \{X, \emptyset, \{b, c\}\}$. Define the function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Since for the closed set $U = \{a\}$ in $(Y, \sigma), f^{-1}(U) = \{b\}$ is R-closed but not g-closed in (X, τ) .

Proposition 7. The following example show that *R*-continuity is independent of pre-continuity. Let $X = Y = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}\}, \sigma = \{X, \emptyset, \{b\}\}$. Define the function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = c, f(c) = b. Since for the closed set $U = \{a, c\}$ in $(Y, \sigma), f^{-1}(U) = \{a, b\}$ is *R*-closed but not pre-closed in (X, τ) . Let $X = Y = \{a, b, c\}, \tau = \{X, \emptyset, \{a, b\}\}, \sigma = \{X, \emptyset, \{a, c\}\}$. Define the function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Since for the closed set $U = \{b\}$ in $(Y, \sigma), f^{-1}(U) = \{a\}$ is pre-closed but not *R*-closed in (X, τ) .

Proposition 8. The following example show that R-continuity is independent of α -continuity. Let $X = Y = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}\}, \sigma = \{X, \emptyset, \{c\}\}$. Define the function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Since for the closed set $U = \{a, b\}$ in $(Y, \sigma), f^{-1}(U) = \{a, b\}$ is R-closed but not α -closed in (X, τ) . Let $X = Y = \{a, b, c\}, \tau = \{X, \emptyset, \{b, c\}\}, \sigma = \{X, \emptyset, \{a, b\}\}$. Define the function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = a, f(c) = b. Since for the closed set $U = \{c\}$ in $(Y, \sigma), f^{-1}(U) = \{a\}$ is α -closed but not R-closed in (X, τ) . From the above discussions and known results we have the following implications. $A \to B$ ($A \leftrightarrow B$) represents A implies B but not conversely (A and B are independent of each other).

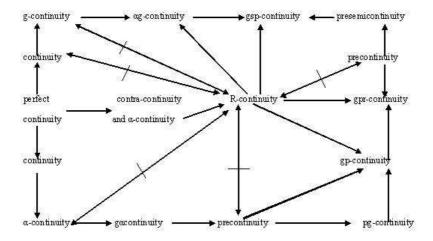


Figure 1: Functional relationships.

4. Characterizations of R-continuous Functions.

Now we shall obtain characterizations of R-continuous functions in the sense of definition 1.

Theorem 1. A function $f : (X, \tau) \to (Y, \sigma)$ is *R*-continuous if and only if $f^{-1}(U)$ is *R*-open in (X, τ) for every open set U in (Y, σ) .

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be R-continuous and U be an open set in (Y, σ) . Hence U^c is closed in (Y, σ) . Since f is R-continuous $f^{-1}(U^c)$ is R-closed in (X, τ) . Therefore $[f^{-1}(U^c)]^c = f^{-1}(U)$ is R-open in (X, τ) . Converse is similar.

Remark 1. The composition of two R-continuous functions need not be R-continuous and this can be shown by the following example. By [remark 6.3, 9], composition of two R-continuous functions need not be R-continuous.

Definition 7. A space (X, τ) is said to be T_R -space if every R-closed set is closed.

Theorem 2. If (X, τ) and (Z, ζ) be topological spaces and (Y, σ) be T_R -space then the composition $g \circ f : (X, \tau) \to (Z, \zeta)$ of *R*-continuous functions $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \zeta)$ is *R*-continuous.

Proof. Let G be any closed set of (Z, ζ) . Then by assumption $g^{-1}(G)$ is closed in (Y, σ) . Hence $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is R-closed in (X, τ) . Thus $g \circ f$ is R-continuous.

Theorem 3. Let (X, τ) and (Z, ζ) be any topological spaces and (Y, σ) be $T_{1/2}$ space (respectively $T \omega$ space). Then the composition $g \circ f : (X, \tau) \to (Z, \zeta)$ of *R*-continuous $f : (X, \tau) \to (Y, \sigma)$ and *g*-continuous function $g : (Y, \sigma) \to (Z, \zeta)$ (respectively ω -continuous) is *R*-continuous.

Proof. Let G be any closed set of (Z, ζ) . Then $g^{-1}(G)$ is g-closed in (Y, σ) and by assumption, $g^{-1}(G)$ is closed in (Y, σ) . Since f is R-continuous $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is R-closed in (X, τ) . Thus $g \circ f$ is R-continuous.

Theorem 4. If $f : (X, \tau) \to (Y, \sigma)$ is *R*-continuous and $g : (Y, \sigma) \to (Z, \zeta)$ is continuous. Then their composition $g \circ f : (X, \tau) \to (Z, \zeta)$ is *R*-continuous.

Proof. Let G be closed in (Z, ζ) . Thus $g^{-1}(G)$ is closed in (Y, σ) . Since f is R-continuous $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is R-closed in (X, τ) . Thus $g \circ f$ is R-continuous.

Theorem 5. If $f : (X, \tau) \to (Y, \sigma)$ is continuous and contra α -continuous and $g : (Y, \sigma) \to (Z, \zeta)$ is contra continuous, then $g \circ f : (X, \tau) \to (Z, \zeta)$ is *R*-continuous.

Proof. Let G be any closed set of (Z, ζ) . Since g is contra continuous $g^{-1}(G)$ is open in (Y, σ) . Since f is continuous and contra α -continuous, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is open and α -closed in (X, τ) . Then by [theorem 3.2, 9] we get the proof.

Theorem 6. If $f : (X, \tau) \to (Y, \sigma)$ is *R*-irresolute and $g : (Y, \sigma) \to (Z, \zeta)$ is *R*-continuous then $g \circ f : (X, \tau) \to (Z, \zeta)$ is *R*-continuous.

Proof. Let G be any closed set of (Z, ζ) . Since g is R-continuous $g^{-1}(G)$ is R-closed in (Y, σ) . Since f is R-irresolute $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is R-closed in (X, τ) . Thus $g \circ f$ is R-continuous.

Definition 8. Let x be a point of (X, τ) and V be subset of X. Then V is called a R-neighbourhood of x in (X, τ) if there exist a R-open set U of (X, τ) such that $x \in U \subseteq V$.

Theorem 7. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then the following statements are equivalent.

- (i) The function f is R continuous.
- (ii) The inverse of each open set in (Y, σ) is R-open in (X, τ) .
- (iii) The inverse of each closed set in (Y, σ) is R-closed in (X, τ) .
- (iv) For each x in (X, τ) the inverse of every neighbourhood of f(x) is a R-neighbourhood of x.
- (v) For each x in (X, τ) and each neighbourhood N of f(x) there is a R-neighbourhood W of x such that $f(W) \subseteq N$.
- (vi) For each subset A of (X, τ) , $f(Rcl(A)) \subseteq cl(f(A))$.
- (vii) For each subset B of (Y, σ) , $Rcl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

Proof. i⇔ii

This follows from theorem 1.

ii⇔iii. This proof is clear from the result $f^{-1}(A^c) = (f^{-1}(A))^c$.

ii⇔iv. Assume ii. For $x \in (X, \tau)$, let N be a neighbourhood of f(x). Then there exist an open set V in (Y, σ) such that $f(x) \in V \subseteq N$. Consequently $f^{-1}(V)$ is R-open set in (X, τ) and $x \in f^{-1}(V) \subseteq f^{-1}(N)$. Thus $f^{-1}(N)$ is an R-neighbourhood of x.

Assume iv. Let U be open in (Y, σ) . Let $x \in U$. Then by assumption $f^{-1}(U)$ is a R-neighbourhood of X. Thus $f^{-1}(U)$ is open in (X, τ) .

iv⇔v. Let $x \in (X, \tau)$. Let N be a neighbourhood of f(x). ⇔ $W = f^{-1}(N)$ is a R-neighbourhood of x and $f(W) = f(f^{-1}(N)) \subseteq N$.

vi \Leftrightarrow iii. Suppose iii holds. Let A be a subset of (X, τ). Since

 $A \subseteq f^{-1}(f(A)), A \subseteq f^{-1}(cl(f(A)))$. But $f^{-1}(cl(f(A)))$ is a closed set, by assumption $f^{-1}(cl(f(A)))$ is a R-closed set containing A.

Consequently, $R(cl(A)) \subseteq f^{-1}(cl(f(A)))$. Thus $f(R(cl(A)) \subseteq cl(f(A))$. Conversely iv holds. Let F be a closed subset of (Y, σ) . Hence $f(R(cl(f^{-1}(F)))) \subseteq cl(f(f^{-1}(F))) \subseteq cl(F) = F$. Hence $R(cl(f^{-1}(F))) \subseteq f^{-1}(F)$. Thus $f^{-1}(F)$ is a R-closed set in (X, τ) .

vi⇔vii. Suppose vi holds. Let B be any subset of (Y, σ) . Replacing A by $f^{-1}(B)$ in vi we get, $f(R - cl(f^{-1}(B)) \subseteq cl(f(f^{-1}(B)) \subseteq cl(B))$. Thus $R - cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$. Suppose vii holds. Let B = f(A) where A is a subset of (X, τ) .

Then $R - cl(A) \subseteq R - cl(f^{-1}(B)) \subseteq f^{-1}(cl(f(A)))$. Thus $f(R - cl(A) \subseteq clf(A))$. This completes the proof of the theorem.

Proposition 9. If A is any R-closed set in (X, τ) and if $f : (X, \tau) \rightarrow (Y, \sigma)$ is ω -irresolute, open and α -closed then f(A) is R-closed in (Y, σ) .

Proof. Let U be any ω -open in (Y, σ) such that $f(A) \subseteq U$. Then $A \subseteq f^{-1}(U)$. Since f is ω -irresolute and A is R-closed in (X, τ) , $\alpha - cl(A) \subseteq int(f^{-1}(U))$. Since f is open, $f(int(f^{-1}(U))) \subseteq int(U)$. Thus $f(\alpha cl(A)) \subseteq int(U)$. Hence $acl(f(A)) \subseteq acl(f(\alpha cl(A))) = f(\alpha cl(A) \subseteq int(U))$. Thus f(A) is R-closed in (Y, σ) .

Theorem 8. If A is R-closed(respectively R-open) subset of (Y, σ) , $f : (X, \tau) \to (Y, \sigma)$ is a bijection, continuous and ω -open mappings, then $f^{-1}(A)$ is R-closed (respectively R-open) in (X, τ) .

Proof. Let U be ω -open in (X, τ) such that $f^{-1}(A) \subseteq U$. Then $A \subseteq f(U)$. Since A is R-closed in (Y, σ) , $acl(A \subseteq)int(f(U))$. Since f is a bijection and continuous, $f^{-1}(acl(A)) \subseteq f^{-1}(int(f(U))) \subseteq int(f^{-1}(f(U)) = int(U)$. Now $acl(f^{-1}(A)) \subseteq acl(f^{-1}(acl(A))) = f^{-1}(acl(A)) \subseteq int(U)$. Thus $f^{-1}(A)$ is R-closed in (X, τ) . By taking complements we can show that if A is R-open in (Y, σ) , $f^{-1}(A)$ is R-open in (X, τ) .

Definition 9. The intersection of all R-closed sets each containing a set A in a topological space X is called the R-closure of A and is denoted by R - cl(A).

Theorem 9. Let A be a subset of (X, τ) . Then $x \in R - cl(A)$ if and only if for any R-neighbourhood N_x of x in (X, τ) , $A \cap N_x = \phi$.

Proof. Assume $x \in R - cl(A)$. Suppose that there exists a neighbourhood N_x of x such that $A \bigcap N_x \neq \emptyset$. Since N_x is a R-neighbourhood of x in (X, τ) , there exist a R-open set V_x such that $x \in V_x \subseteq N_x$. Hence $A \bigcap V_x = \emptyset$. Thus $A \subseteq V_x^c$. Since V_x^c is a R-closed set containing A, we get $R - cl(A) \subseteq V_x^c$. $\Rightarrow x \notin R - cl(A)$. Which is a contradiction. Assume that for each R-neighbourhood N_x of x in (X, τ) , $A \bigcap N_x = \emptyset$. Suppose $x \in R - cl(A)$ then there exist a R-closed set V of (X, τ) such that $A \subseteq V$ and $x \in V$. Thus $x \in V^c$ and V^c is R-open in (X, τ) . But $A \in V^c = \emptyset$. Which is a contradiction.

Theorem 10. (i) If $f : (X, \tau) \to (Y, \sigma)$ is α -continuous and contra continuous then f is R-continuous.

(ii) If $f:(X,\tau) \to (Y,\sigma)$ is ag-continuous and contra continuous then f is R-continuous.

Proof. Let V be closed in (Y, σ) . Since f is α -continuous and contra continuous $f^{-1}(V)$ is α -closed and open in (X, τ) . By [theorem 3.2, 9] $f^{-1}(V)$ is R-closed in (X, τ) . Let V be closed in (Y, σ) . Since f is α g-continuous and contra continuous $f^{-1}(V)$ is α g closed and open in (X, τ) . By [theorem 2.5.28, 8] $f^{-1}(V)$ is α -closed and open in (X, τ) . Hence $f^{-1}(V)$ is R-closed.

Theorem 11. If $f : (X, \tau) \to (Y, \sigma)$ is *R*-irresolute and $g : (Y, \sigma) \to (Z, \zeta)$ is *R*-irresolute then $g \circ f : (X, \tau) \to (Z, \zeta)$ is *R*-irresolute.

Proof. Let G be R-closed in (Z, ζ) . Since g is R-irresolute, $g^{-1}(G)$ is R-closed in (Y, σ) . Since f is R-irresolute $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is R-closed in (X, τ) . Thus $g \circ f$ is R-irresolute.

5. R-Compact and R-Connected Spaces

Definition 10. A topological space (X, τ) is *R*-compact if every *R*-open cover of *X* has a finite subcover.

Definition 11. A topological space (X, τ) is *R*-connected if *X* cannot be written as the disjoint union of two nonempty *R*-open sets.

Theorem 12. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ is surjective, *R*-continuous functions. If *X* is compact then *Y* is compact.

Proof. Let $\{(A_i)/i \subseteq I\}$ be an open cover of Y. Then $\{f^{-1}(A_i)/i \in I\}$ is a R-open cover of X. Since X is R-compact, it has a finite subcover say $\{f^{-1}(A_1), f^{-1}(A_2), f^{-1}(A_3), \dots, \{f^{-1}(A_n)\}\}$. Since f is surjective, $\{A_1, A_2, \dots, A_n\}$ is a finite subcover of Y and Y is compact.

Theorem 13. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ is surjective, *R*-continuous (*R*-irresolute) functions. If *X* is *R*-connected then *Y* is connected (*R*-connected).

Proof. Suppose Y is not connected (R-connected). Then Y = AUB where $AnB \neq \emptyset$, $A \neq \emptyset$, $B \neq \emptyset$ and A, B are open(R-open)sets in Y. Since f is surjective, f(X) = Y and since f is R-continuous(R-irresolute), $X = f^{-1}(A) Uf^{-1}(B)$ is disjoint non empty R-open sets of X. Thus a contradiction that X is R-connected.

Definition 12. A subset of a space X is called R-compact relative to X if every collection $\{U_i/i \subset I\}$ of R-open subsets of X such that $A \subset \bigcup_{i \in i} U_i$ there exist a finite subset I_0 of I such that $A \subset \bigcup_{i \in i_0} U_i$.

Theorem 14. Every R-closed subset of a R-compact space X is R-compact relative to X.

Proof. Let A be a R-closed subset of a R-compact space X. Let $\{U_i/i \in I\}$ be a cover of A by R-open subsets of X. Hence $A \subseteq \bigcup_{i \in i} U_i$ and then $(X \setminus A) \bigcup (\bigcup_{i \in i} U_i) = X$. Since X is R-compact, there exist a finite subset I_0 of I such that $(X \setminus A) \bigcup (\bigcup_{i \in i_0} U_i) = X$. Thus $A \subseteq \bigcup_{i \in i_0} U_i$. Hence A is R-compact relative to X.

Proposition 10. An *R*-closed subset of α GO-compact space is α GO-compact relative to (X, τ) .

Proof. By [theorem 3.3, 9] every R-closed set is α g-closed and since a g-closed subset of a α GO-compact space is α GO-compact relative to (X, τ) [4], the result follows.

Proposition 11. If a map $f : (X, \tau) \to (Y, \sigma)$ is *R*-irresolute and a subset *B* is *R*-compact relative to (X, τ) , then the image f(B) is *R*-compact relative to (Y, σ)

Proof. Let $\{A_i / i \in I\}$ be any collection of R-open sets of (Y, σ) such that $f(B) \subseteq \bigcup_{i \in i} A_i$. Then $B \subseteq \bigcup_{i \in i} f^{-1}(A_i)$. By hypothesis, there exists a finite subset I_0 of I such that $B \subseteq \bigcup_{i \in i_0} f^{-1}(A_i)$ and so f(B) is R-compact relative to (Y, σ) .

Proposition 12. If (X, τ) is a T_R -space and connected then (X, τ) is R-connected.

Proof. If (X, τ) is not R-connected, then $X = A \bigcup B$ where A and B are disjoint non empty R-open sets. Since (X, τ) is a T_R -space, we get a contradiction to the connectedness of (X, τ) .

Proposition 13. If $f : (X, \tau) \to (Y, \sigma)$ is an *R*-continuous surjection and (X, τ) is *R*-connected, then (Y, σ) is connected.

Proof. Suppose that Y = AUB, where A and B are disjoint nonempty open sets of (Y, σ) . Since f is R-continuous and onto, $X = f^{-1}(A)Uf^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint nonempty R-open sets in (X, τ) . This contradicts the fact that (X, τ) is R-connected and so (Y, σ) is connected.

Theorem 15. For a topological space (X, τ) , the following are equivalent:

- (i) (X, τ) is *R*-connected.
- (ii) The only subsets of (X, τ) which are both R-open and R-closed are the empty set \emptyset and X.

REFERENCES

(iii) Each R-continuous map of (X, τ) into a discrete space (Y, σ) with at least two points is a constant map.

Proof. i \Rightarrow ii. Let U be an R-open and R-closed subsets of (X, τ) . Then U^c is both R-open and R-closed in (X, τ) . Hence (X, τ) is the disjoint union of R-open sets U and U^c , by assumption one of these must be empty. Thus $U = \emptyset$ or U = X.

ii⇒i. Suppose X = AUB where A and B are disjoint nonempty R-open subsets of (X, τ) . Then A is both R-open and R-closed subsets of (X, τ) . Hence by assumption $A = \emptyset$ or X. Thus (X, τ) is R-connected.

ii⇒iii. Let $f : (X, \tau) \to (Y, \sigma)$ be an R-continuous map. Then (X, τ) is covered by R-open and R-closed covering $\{f^{-1}(y)/y \in Y\}$. By assumption $f^{-1}(y) = \emptyset$ or X for each $y \in Y$. If $f^{-1}(y) = \emptyset$ for each $y \in Y$, then f fails to be a map which shows that f is a constant map.

iii \Rightarrow ii. Let U be both R-open and R-closed in (X, τ) . Suppose that $U \neq \emptyset$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(U) = \{y_1\}$ and $f(U^c) = \{y_2\}$ for some distinct points y_1 and y_2 in (Y, σ) then f is an R-continuous map.By assumption f is a constant map. Thus $y_1 = y_2$ and U = X.

References

- [1] D. Andrijevic. Semi pre open sets. Mat. Versnik, 38:24–32, 1986.
- [2] L. Arokiarani, K. Balachandran, and J. Dontchev. Some characterization of gp-irresolute and gp- continuous maps between topological spaces. 20:93–104, 1999.
- [3] K. Balachandran, P. Sundaram, and H. Maki. On generalized continuous maps in topological spaces. *Mem Fac. Sci. Kochi Univ. Ser A. Math*, 12:5–13, 1991.
- [4] R. Devi. Studies on generalizations of closed maps and homeomorphisms in topological spaces. PhD thesis, Bharathiar University, Coimbatore, 1994.
- [5] J. Dontchev. On generalizing semi pre open sets. InternAt. J. Math. Sci., 16:35–48, 1995.
- [6] J. Dontchev. Contra-continuous functions and strongly s-closed spaces. *Mem. Fac. Sci. Kochi Univ. (Math)*, 19:310, 1996.
- [7] Y. Gnanambal. Generalized pre-regular closed sets in topological spaces. *Indian J. Pure Appl. Maths*, 283:351–360, 1997.
- [8] M.S. John. *On w closed sets in Topology*. PhD thesis, Bharathiar University, Coimbatore, sep 2002.
- [9] P. Krishna and J.A.R. Rodrigo. R-closed sets in topological spaces. *Indian Journal of Mathematical Archive*, 211:2166–2176, 2011.
- [10] N. Levine. Semi open sets and semi continuity in topolosicalspaces. *Amer. Math. Monthly*, 70:36–41, 1963.

- [11] N. Levine. Generalized closed sets in topology. *Rend. circl, Mat. Palermo*, 192:89–96, 1970.
- [12] H. Maki, R. Devi, and K. Balachandran. Associated topologies of generalized closed sets. *Mem. Fac. Sci. Kochi Univ. (Math)*, 15:51–63, 1994.
- [13] A. Mashhour and E.L. Deep. On pre continuous and weak pre continuous mappings. *Pro. Math and phys. soc., Egypt*, 53:47–53, 1982.
- [14] J. Njasted. On some classes of nearly open sets. Pacific. J. Math, 15:961–970, 1965.
- [15] T. Noiri, H. Maki, and J. Umehara. Generalised preclosed functions. *Mem. Fac. sci. Kohci Univ. Series A Maths*, 19:13–20, 1998.
- [16] P. Sundaram and M.S. John. Weakly closed sets and weak continuous functions in topological spaces. Proc. 82nd Indian sci. cong. calcutta, 49, 1995.
- [17] M. L. Thivagar. A note on quotient mapping. Bull. Malaysian Math. Soc, 14:21–30, 1991.