EUROPEAN JOURNAL OF MATHEMATICAL SCIENCES Vol. 2, No. 1, 2013, 62-71 ISSN 2147-5512 – www.ejmathsci.com



# On a Class of Positive Linear Operators

Bramha Dutta Pandey<sup>\*</sup>, B. Kunwar

Department of Applied Sciences ,Institute of Engineering and Technology, Lucknow -21 ,India

**Abstract.** A new class of positive linear operators have been introduced which contains a number of well known positive linear operators such as Gamma-Operators of Muller, Post-Widder and Modified Post-Widder Operators as particular cases.Some basic approximation properties of this class of operators have been studied in this paper.

2010 Mathematics Subject Classifications: 41A25, 41A35, 41A36, 41A60

Key Words and Phrases: Positive linear operators, Order of approximation, Rate of convergence

## 1. Introduction

A number of classes and sequences of positive linear operators (henceforth written as operator) both, of the summation and those defined by integrals have been introduced and studied by a number of authors during the past few decades. Some of well known operators of latter type are the Gamma-Operators of Muller [6], Post-Widder Operators [10], Modified Post-Widder Operators [5], Gauss-Weierstrass Integrals [7], Convolution type operators [8], Baskakov Operators [1], and the operators studied by De Vore [2], Leviaton [4], Kunwar [3], Sikkema and Rathore [9].

In this paper we will study a class of operators which contains a number of well known operators as special cases. This class of operators was introduced in Kunwar [3]. Now we will give a brief description of the notations and definitions followed by the definition of the operators.

Throughout the paper  $IR^+$  denotes the interval

 $(0,\infty), \langle a, b \rangle$  open interval containing  $[a, b] \subseteq IR^+, \chi_{\delta,x}(\chi_{\delta,x}^c)$  the characteristic function of the interval  $(x - \delta, x + \delta)$  { $IR^+ - (x - \delta, x + \delta)$ }. The spaces  $M(IR^+), M_b(IR^+), Loc(IR^+), L^1(IR^+)$  respectively denote the sets of complex valued measurable, bounded and measurable, locally integrable and Lebesgue integrable functions on  $IR^+$ .

http://www.ejmathsci.com

(c) 2013 EJMATHSCI All rights reserved.

<sup>\*</sup>Corresponding author.

Email addresses: bdpandey05@rediffmail.com (B. Pandey), bkunwar.asd@ietlucknow.edu (B. Kunwar)

Now we define our operator  $L_n$  [3] and give some elementary properties of the same.

$$L_n(f;x) = D(m,n,\alpha)x^{mn+\alpha-1}\int_0^\infty u^{-mn-\alpha}e^{-n(\frac{x}{u})^m}f(u)du$$

where

$$D(m,n,\alpha) = \frac{|m|n^{n+\frac{\alpha-1}{m}}}{\Gamma(n+\frac{\alpha-1}{m})}, m \in IR - \{0\}, n > 0, \alpha \in IR.$$

Several well known operators are special cases of  $L_n$ : Choosing m = 1 and  $\alpha = 2$ , the operator reduces to the Gamma-Operators of Muller [6] denoted and defined by

(i)  $G_n(f;x) = \frac{x^{n+1}}{n!} \int_0^\infty t^n e^{-tx} f(\frac{n}{t}) dt$ 

Choosing m = -1,  $\alpha = 1$  and m = -1,  $\alpha = 0$  and by proper substitution the operators  $L_n$  reduces respectively to the Post-Widder operators  $S_n^1$  May [5] defined by,

(ii) 
$$S_n^1(f;t) = \frac{1}{(n-1)!} \int_0^\infty e^{-n\frac{u}{t}} u^{n-1} f(u) du$$

and the operators  $L_{k,t}$  [Widder 10] defined by

(iii) 
$$L_{k,t}(f;x) = \frac{1}{k!} (\frac{k}{t})^{k-1} \int_{0}^{\infty} e^{-\frac{ku}{t}} u^{k} f(u) du$$

We will make use of a bounding function introduced by Rathore [7] for establishing the basic convergence theorem for our operators.

**Definition 1.** Let  $\Omega(> 1)$  be a continuous function defined on  $IR^+$ . We call  $\Omega$ , a bounding function if for each compact  $K \subseteq IR^+$ , there exist positive numbers  $n_k$  and  $M_k$  such that

$$L_{n_k}(\Omega; x) < M_k, x \in K$$

For our operators the bounding function is

$$\Omega(u) = u^{-a} + e^{bu^m} + u^c$$
, where  $a, b, c \ge 0$ .

For this bounding function  $\Omega$  we define

$$D_{\Omega} = \{ f \in Loc(IR^+) \text{ such that } \limsup_{u \to 0} \frac{f(u)}{\Omega(u)} \text{ and } \limsup_{u \to \infty} \frac{f(u)}{\Omega(u)} \text{ exist } \}$$

#### 2. Basic Approximation

**Lemma 1.** If  $0 < \delta < a < b < \infty$  and  $f \in D_{\Omega}$ , then

$$\lim_{n \to \infty} n^k L_n(f \chi^c_{\delta, x}; x) = 0$$
<sup>(1)</sup>

uniformly in  $x \in [a, b]$  for any  $k \in IR^+$ .

*Proof.* Since  $f \in D_{\Omega}$ ,  $\exists$  positive constants *A*, *B* and *M* such that  $A < min\{1, a\}$  and  $B > max\{1, b\}$  and  $|f(u)| < M\Omega(u)$  for all  $u \in (0, \frac{b}{B}) \cup (\frac{a}{A}, \infty)$ . Let  $J(A, B) = (0, A) \cup (B, \infty)$  then

$$\left| \int_{J(A,B)} u^{mn+\alpha-2} e^{-nu^m} f(\frac{x}{u}) \chi^c_{\delta,x}(\frac{x}{u}) du \right| \leq M \int_{J(A,B)} u^{mn+\alpha-2} e^{-nu^m} \Omega(\frac{x}{u}) du$$
(2)

For  $\Omega(u)$ , there exists  $n_1, M_1 > 0$  such that  $L_{n_1}(\Omega; x) < M_1$ , for all  $x \in [a, b]$ . For any  $\varepsilon > 0$  we have

$$u^m e^{-u^m} < \frac{1}{e} - 2\varepsilon$$
 for almost all  $u \in J(A, B)$ .

Hence if  $n > n_0 > n_1$ , we have

$$\int_{J(A,B)} u^{mn+\alpha-2} e^{-nu^m} \Omega(\frac{x}{u}) du \leq \left(\frac{1}{e} - 2\varepsilon\right)^{n-n_0} \frac{1}{D(m,n,\alpha)} L_{n_0}(\Omega;x) \\ \leq M_1 \frac{1}{D(m,n,\alpha)} \left(\frac{1}{e}\right)^{n-n_0} \left(\frac{1}{e} - 2\varepsilon\right)^{n-n_0} = \left[\frac{M(n_0,n_1)}{M}\right] \left(\frac{1}{e} - 2\varepsilon\right)^n \quad (3)$$

By choosing a positive  $\delta_1$  such that  $\frac{b}{b+\delta} < 1 - \delta_1 < 1 + \delta_1 < \frac{b}{b-\delta}$  and using the property of the function  $u^m e^{-u^m}$  for sufficiently small  $\varepsilon$  we have  $u^m e^{-u^m} < \frac{1}{e} - 2\varepsilon$  for almost all  $u \in IR^+ - (1 - \delta_1, 1 + \delta_1)$ . Hence

$$\left| \int_{A}^{B} u^{mn+\alpha-2} e^{-nu^{m}} f(\frac{x}{u}) \chi_{\delta,x}^{c}(\frac{x}{u}) du \right| \leq \left(\frac{1}{e} - 2\varepsilon\right)^{n-n_{0}} \int_{A}^{B} u^{mn_{0}+\alpha-2} e^{-n_{0}u^{m}} \left| f(\frac{x}{u}) \right| du$$
$$\leq \left(\frac{1}{e} - 2\varepsilon\right)^{n-n_{0}} D(m, n_{0}, \alpha) \frac{A^{\alpha} + B^{\alpha}}{e^{n_{0}}} \int_{\frac{a}{p}}^{\frac{b}{A}} \left| f(u) \right| du = \left(\frac{1}{e} - 2\varepsilon\right)^{n} M(n_{0}) \quad (4)$$

Since  $u^m e^{-u^m}$  is continuous at u=1, there exists a  $\delta_2 > 0$  s.t.  $u^m e^{-u^m} > \frac{1}{e} - \varepsilon$ , for all  $u \in (1 - \delta_2, 1 + \delta_2)$ . Therefore

$$\frac{1}{D(m,n,\alpha)} > \int_{1-\delta_2}^{1+\delta_2} u^{mn+\alpha-2} e^{-nu^m} du > \delta_2 (\frac{1}{e} - \varepsilon)^n$$
(5)

Thus (2), (3), (4) and (5) imply that

$$\left|L_n(f\chi_{\delta,x}^c;x)\right| \le \frac{M(n_0,n_1) + M(n_0)}{\delta_2} \frac{(\frac{1}{e} - 2\varepsilon)^n}{(\frac{1}{e} - \varepsilon)^n}$$

since

$$\lim_{n \to \infty} n^k \frac{\left(\frac{1}{e} - 2\varepsilon\right)^n}{\left(\frac{1}{e} - \varepsilon\right)^n} = 0 \text{ for any } k \in IR^+$$

this proves the lemma.

Next we prove the following basic approximation theorem.

**Theorem 1.** If  $f \in D_{\Omega}$  and is continuous at a point  $x \in IR^+$ , then there holds

$$\lim_{n \to \infty} L_n(f; x) = f(x) \tag{6}$$

further if f is continuous on  $\langle a, b \rangle$ , then convergence of (6) holds uniformly in [a, b].

*Proof.* By continuity of f(u) at u = x, given  $\varepsilon > 0$  arbitrary we can find a  $\delta > 0$  such that

$$\left|f(u) - f(x)\right| < \frac{\varepsilon}{2}, |u - x| < \delta \tag{7}$$

where in the case of uniformity  $\delta$  is independent of  $x \in [a, b]$ . In view of (7) for all  $u \in IR^+$  there holds

$$\left|f(u) - f(x)\right| < \frac{\varepsilon}{2} + \left(\left|f(u)\right| + \left|f(x)\right|\right)\chi^{c}_{\delta,x}(u)$$
(8)

Using the linearity, poisitivity and the property that  $L_n(1; x) = 1$  of  $L_n$  from the inequality (8) we have

$$\left|L_n(f;x) - f(x)\right| \le \frac{\varepsilon}{2} + L_n(\left(\left|f(u)\right| + \left|f(x)\right|\right)\chi^c_{\delta,x}(u);x)$$

since

$$\left(\left|f(u)\right| + \left|f(x)\right|\right)\chi_{\delta,x}^{c}(u) \in D_{\Omega}$$

using Lemma 1, we can find a  $n_0$  such that

$$L_n((|f(u)| + |f(x)|)\chi^c_{\delta,x}(u); x) < \frac{\varepsilon}{2}$$

for all  $n > n_0$  and ( $x \in [a, b]$  in this uniformity case). Hence

$$\left|L_n(f;x) - f(x)\right| \le \varepsilon$$
, for  $n > n_0$ 

since  $\varepsilon > 0$  is arbitrary, the theorem holds.

#### 3. Voronovskaya Theorems

The existence of the third order derivative at the point u = 1 and the non zero second order derivative at u = 1 of the function  $u^m e^{-u^m}$  ensures that the operators  $L_n$  possesses a Voronovskaya-type asymptotic formula. The main result will be followed by the following auxiliary results.

**Lemma 2.** If  $\delta > 0$  is sufficiently small, then the following equalities are true for the operators  $L_n(f; x)$ .

(i)  $\lim_{n \to \infty} mnD(m, n, \alpha) \int_{1-\delta}^{1+\delta} u^{\alpha+mn+m-3} e^{-(n+1)u^m} (1-u^m) du = \frac{2-\alpha}{e}$ 

(*ii*) 
$$\lim_{n \to \infty} m^2 n D(m, n, \alpha) \int_{1-\delta}^{1+\delta} u^{\alpha+mn+2m-1} e^{-(n+2)u^m} (1-u^m)^2 du = (\frac{m}{e})^2$$

(*iii*)  $\lim_{n\to\infty} nD(m,n,\alpha) \int_{1-\delta}^{1+\delta} u^{\alpha+mn-2} e^{-nu^m} (\frac{1}{e} - u^m e^{-u^m}) du = \frac{1}{2e}$ 

*Proof.* Integrating by parts, taking  $u^{\alpha-2}$  as the first functon

$$mD(m,n,\alpha) \int_{1-\delta}^{1+\delta} u^{\alpha+mn+m-3} e^{-(n+1)u^m} (1-u^m) du$$
  
=  $D(m,n,\alpha) \left[ \frac{u^{\alpha+mn+m-2} e^{-(n+1)u^m}}{n+1} \right]_{1-\delta}^{1+\delta} - \frac{(\alpha+2)}{(n+1)} \int_{1-\delta}^{1+\delta} u^{\alpha+mn+m-2} e^{-(n+1)u^m} du$ 

for a given  $\varepsilon > 0$  we can find a  $\delta_1(0 < \delta_1 < \delta)$  such that

$$\left(\frac{1}{e}-\varepsilon\right)D(m,n,\alpha)\int_{1-\delta_{1}}^{1+\delta_{1}}u^{\alpha+mn-2}e^{-nu^{m}}du \leq D(m,n,\alpha)\int_{1-\delta_{1}}^{1+\delta_{1}}u^{\alpha+mn+m-3}e^{-(n+1)u^{m}}du$$
$$\leq \left(\frac{1}{e}+\varepsilon\right)D(m,n,\alpha)\int_{1-\delta_{1}}^{1+\delta_{1}}u^{\alpha+mn-2}e^{-nu^{m}}du$$

Applying Theorem 1, we have

$$\lim_{n\to\infty} D(m,n,\alpha) \int_{1-\delta_1}^{1+\delta_1} u^{\alpha+mn-2} e^{-nu^m} du = 1$$

Hence if *n* is sufficiently large say  $n > n_0$ ,

$$1 - \varepsilon \le D(m, n, \alpha) \int_{1-\delta_1}^{1+\delta_1} u^{\alpha + mn - 2} e^{-nu^m} du \le 1 + \varepsilon$$

therefore if  $n > n_0$ 

$$(1-\varepsilon)(\frac{1}{e}-\varepsilon) \le D(m,n,\alpha) \int_{1-\delta_1}^{1+\delta_1} u^{\alpha+mn+m-3} e^{-(n+1)u^m} du \le (1+\varepsilon)(\frac{1}{e}+\varepsilon)$$

Let

$$\left\|\chi_{\delta,1}^{c}u^{m}e^{-u^{m}}\right\|_{\infty}=\left(\frac{1}{e}-2\mu\right)$$

Also by the continuity of the above function, there exists a  $\delta_2(0 < \delta_2 < \delta)$  such that

$$\inf_{|u-1|<\delta_2} u^m e^{-u^m} \ge (\frac{1}{e} - \mu)$$

Hence  $D^{-1}(m, n, \alpha) \ge \delta_2(\frac{1}{e} - \mu)^n$  and therefore if n is sufficiently large

$$\left| D(m,n,\alpha) \left[ \frac{u^{\alpha+(n+1)m-2e}e^{-(n+1)u^m}}{n+1} \right]_{1-\delta}^{1+\delta} \right| \le \frac{\varepsilon}{n}, \ n > n_1$$

In view of Theorem 1, it is clear that there exists a  $n_2$  such that

$$D(m,n,\alpha)\int_{(1-\delta,1+\delta)/(1-\delta_1,1+\delta_1)} u^{\alpha+mn-2}e^{-nu^m}\chi^c_{\delta_1,1}(u)du \leq \varepsilon, \ n>n_2$$

Making use of the above estimates and the fact that  $\varepsilon$  is arbitrary, we have (i). (ii) The proof uses similar analysis and the fact that

$$\lim_{n \to \infty} \frac{D(m, n, \alpha)}{D(m, n+1, \alpha)} = e^{-1}$$

Therefore we leave the proof to the reader. (iii) Given an arbitrary  $\varepsilon > 0$ , there exists a  $\delta_0(0 < \delta_0 < \frac{1}{1+\delta})$  such that

$$\begin{aligned} &-\frac{1}{2}(1-\varepsilon)u^{2(m-1)}e^{1-2u^{m}}(1-u^{m})^{2} \leq u^{m}e^{-u^{m}}-e^{-1} \\ &\leq -\frac{(1+\varepsilon)u^{2(m-1)}}{2}e^{1-2u^{m}}(1-u^{m})^{2}, \ \left|u^{-1}-1\right| < \delta_{0} \end{aligned}$$

Now, using the arguments given in the proof of part (i), the proof easily follows. This completes the proof of the lemma.

The main results of this section are given in

**Theorem 2.** If  $f \in D_{\Omega}$ , and at a certain point  $x \in IR^+$ , f'' exists, then there holds

$$L_n(f;x) - f(x) = \frac{xf'(x)[3 - 2\alpha + m]}{2nm^2} + \frac{x^2f''(x)}{2nm^2} + o(\frac{1}{n}) \text{ as } n \to \infty.$$
(9)

Further, if f'' exists and is continuous on  $\langle a, b \rangle$ , then (9) holds uniformly on [a, b].

Proof. Using L'Hospital's rule we have

$$\lim_{u \to 1} \frac{f(\frac{x}{u}) - f(x) - \frac{xf'(x)[mu^{m-1}(1-u^m) + (m-3)u^m e^{1-u^m} + (3-m)]}{m^2}}{e^{-1} - u^m e^{-u^m}} + \frac{\frac{2xf'(x) + x^2f''(x)(u^m e^{1-u^m})}{\frac{m^2}{e^2}}}{e^{-1} - u^m e^{-u^m}} = 0$$

Hence, given an arbitrary  $\varepsilon > 0$  there exists a  $\delta > 0$  such that if u satisfies  $\left|\frac{x}{u} - x\right| < \delta$ , there holds

$$f(\frac{x}{u}) - f(x) - \frac{xf'(x)}{m^2} [mu^{m-1}e^{1-u^m} + (m-3)u^m e^{1-u^m} + (3-m)] + (2xf'(x) + x^2f''(x)(u^m e^{1-u^m})) / \frac{m^2}{e^2} \le \varepsilon(e^{-1} - u^m e^{-u^m})$$

Moreover, it is easily seen that in the uniformity case the above  $\delta$  can be chosen independent of  $x \in [a, b]$ . Multiplying the inequality by  $u^{\alpha+mn-2}e^{-nu^m}nD(m, n, \alpha)$  and integrating between the limits  $(1 - \delta, 1 + \delta)$  and making use of Lemma 2, we have

$$\begin{aligned} \frac{-\varepsilon}{2e} &\leq \limsup nD(m,n,\alpha) \int_{1-\delta}^{1+\delta} [f(\frac{x}{u}) - f(x)] u^{\alpha + mn - 2} e^{-nu^m} du \\ &+ \frac{xf'(x)(\alpha - 2)}{m^2} + \frac{xf'(x)(3 - m)}{2m^2} - \frac{[2xf'(x) + x^2f''(x)]}{2m^2} \leq \frac{\varepsilon}{2e} \\ &\lim_{n \to \infty} nD(m,n,\alpha) \int_{(0,\infty) - (1-\delta, 1+\delta)} [f(\frac{x}{u}) - f(x)] u^{\alpha + mn - 2} e^{-nu^m} du = 0 \end{aligned}$$

which holds uniformly in  $x \in [a, b]$ , in the uniformity case.

Hence

$$\frac{-\varepsilon}{2e} \le \limsup[L_n(f;x) - f(x)] + \frac{xf(x)(\alpha - 2)}{m^2} + \frac{xf'(x)(3 - m)}{2m^2} - \frac{[2xf'(x) + x^2f''(x)]}{2m^2} \le \frac{\varepsilon}{2e}$$

In view of the fact that  $\varepsilon > 0$  arbitrary, the result follows.

**Corollary 1.** Choosing  $m = 1, \alpha = 2$ , we obtain the Voronovskaya formula for the Gamma-Operators of Muller.

$$G_n(f;x) - f(x) = \frac{x^2 f''(x)}{2n} + o(\frac{1}{n}), n \to \infty$$

**Corollary 2.** Taking m = -1 and  $\alpha = 1$  we have the following Voronovskaya formula for the operators  $S_n^1$ .

$$S_n^1(f;x) - f(x) = \frac{x^2 f''(x)}{2n} + o(\frac{1}{n}), n \to \infty$$

**Corollary 3.** With m = -1 and  $\alpha = 0$  we have the Voronovskaya formula for the operators  $L_{k,t}$ 

$$L_{k,t}(f;x) - f(x) = \frac{xf'(x)}{k} + \frac{x^2f''(x)}{2k} + o(\frac{1}{k}), k \to \infty$$

#### 4. Error Estimates

In the previous section, we obtained a precise formula giving the rate of convergence of  $L_n(f;x)$  to f(x). The assumption on f has been the existence of its second order derivatives. If f is only assumed to be continuous, the following theorem gives an estimate of error  $|L_n(f;x) - f(x)|$  in terms of the modulus of continuity of f.

**Theorem 3.** For the operators  $L_n(f; x)$  there holds

$$\begin{aligned} \left| L_n(f;x) - f(x) \right| \\ &\leq \omega_f(n^{-\frac{1}{2}}) [1 + \min(x^2 \{ \frac{1}{m^2} + o(\frac{1}{n}) \}, x \{ \frac{1}{m^2} + o(1) \}^{\frac{1}{2}}) ], \ x \in IR^+, n \to \infty \end{aligned} \tag{10}$$

where  $\omega_f$  denotes the modulus of continuity of f and  $o(\frac{1}{n})$  are independent of x.

*Proof.* Using (10), we have

$$L_n((u-x)^2; x) = x^2 [\frac{1}{nm^2} + o(\frac{1}{n})], n \to \infty$$
(11)

By elementary properties of modulus of continuity,

$$\left| f(u) - f(x) \right| \le \omega_f(n^{-\frac{1}{2}}) [1 + n^{\frac{1}{2}} |u - x|]$$
(12)

and also

$$\left|f(u) - f(x)\right| \le \omega_f (n^{-\frac{1}{2}})[1 + n(u - x)^2]$$
 (13)

For all  $x, u \in IR^+$ , by Schwartz's inequality (11) implies

$$L_n(|u-x|;x) \le \frac{x}{n^{\frac{1}{2}}} \{\frac{1}{m^2} + o(1)\}^{\frac{1}{2}}, n \to \infty$$
(14)

making use of the linearity and positivity of the operators  $L_n$ , (10) follows from (11) – (14).

For functions which are continuously differentiable the error estimate (10) is rather conservative and better estimate is as follows-

**Theorem 4.** If f'(x) exists and is uniformly continuous on  $IR^+$  there holds,

$$\begin{aligned} \left| L_n(f;x) - f(x) \right| &\leq \frac{x \left| f'(x) \right| e^2}{m^4} \left[ 2(3-\alpha) \frac{m^2}{e} + \frac{m^3 - 3m^2}{e} + o(1) \right] \\ &+ \omega_f(n^{-\frac{1}{2}}) \left[ \frac{x}{n^{\frac{1}{2}}} \left\{ \left\{ \frac{1}{m^2} \right\}^{\frac{1}{2}} + o(1) \right\} + \frac{x^2}{2n^{\frac{1}{2}}} \left\{ \left\{ \frac{1}{m^2} \right\} + o(1) \right\} \right] \end{aligned} \tag{15}$$

 $x \in IR^+, n \to \infty$ , where  $\omega_f$  denotes the modulus of continuity of f.

REFERENCES

Proof. We have,

$$\left|f(u) - f(x) - (u - x)f'(x)\right| \le \left|\int_{x}^{u} (f'(u) - f'(x))du\right| \le \left|\int_{x}^{u} \omega_{f'}(|u - x|)du\right|$$
$$\le \left|\int_{x}^{u} \omega_{f'}(n^{-\frac{1}{2}})(1 + n^{\frac{1}{2}}|u - x|)du\right| = \omega_{f'}(n^{-\frac{1}{2}})\{|u - x| + \frac{1}{2}n^{\frac{1}{2}}(u - x)^{2}\} \quad (16)$$

Since by Theorem 2 we have

$$L_n((u-x);x) = \frac{x}{2nm^2}(3-2\alpha+m) + o(n^{-1})$$

The inequality (15) follows by operating (16) by  $L_n$  and making use of (11), (13) and (16).

**ACKNOWLEDGEMENTS** The first author is thankful to the **Council of Scientific and Industrial Research, India** for providing the financial assistance for the research work under grant no.09/827(0004).

#### References

- [1] V. A. Baskakov. The degree of approximation of differentiable functions by certain linear positive operators. Mat. Sb. 76, (1968), 344-61.
- [2] R. A. Devore. Saturation of positive convolution operators. J. Approx. Thory, (1970), 410-29.
- [3] B. Kunwar Approximation of analytic functions by a class of linear positive operators.Journal of Approx Theory44.(1985), 173-182.
- [4] D. Levioton. On Gamma- Type approximation operators Math. Z. (1972), 124.
- [5] C. P. May. Saturation and inverse theorems for combination of a class of exponential type operators. Canad. J. Math. 28,(1976), 1224-50.
- [6] M. W. Muller. Die Folge der Gamma operatoren. Thesis, Technische Hoschule, Stuttgort. (1967).
- [7] R. K. S. Rathore. Linear combinations of linear positive operators and generating relations in special functions. Thesis, IIT Delhi (1973).
- [8] H. S. Shapiro. Smoothing and approximation of functions. Von Nostrand Riehold co., New York, (1969).

### REFERENCES

- [9] P. C. Sikkema and R. K. S. Rathore. Convolution with powers of bell shaped functions. Report, Dept. of Math. Technische Hogeschool (1976).
- [10] D. V. Widder. The Laplace Transform.Princeton University Press, Princeton (1946).