
EUROPEAN JOURNAL OF MATHEMATICAL SCIENCES

Vol. 2, No. 2, 2013, 178-208

ISSN 2147-5512 – www.ejmathsci.com

The Nature of Stress Pattern Due to a Sudden Movement Across

a Nonplanar Buried Strike-Slip Fault In a Layered Medium

Sanjay Sen1,∗, A. Karmakar 2

1 Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road,

Calcutta-700009,India
2 Udairampur Pallisree Sikshayatan(H.S.), P.O. Kanyanagar,P.S. Bishnupur, Pin-743398, India

Abstract. A layered model of the lithosphere-asthenosphere system consisting of an elastic layer over-

lying a viscoelastic half space is considered. A long, buried, inclined strike-slip fault is taken to be

situated in the medium with a bending at the surface of separation. The mantle convection induced

a constant force on the fault resulting in a sudden movement across it. The movement on the fault

changes the stress pattern in the nearby region. A mathematical model incorporating the essential

features of the tectonic forces and the associated fault movement has been developed. Analytical ex-

pression for displacements, strains and stresses are obtained using suitable mathematical techniques

involving integral transforms, Green’s function etc. Computational work indicates that a sudden move-

ment across the fault has significant effect on the stress accumulation in the region. The variation of

shearing stress with depth and distance from the fault show some interesting features. It is expected

that such features will be useful in understanding the mechanism of earthquakes processes during the

aseismic period.
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1. Introduction

The nature of ground deformation during the aseismic period in seismically active regions

in between two major seismic events should be studied in depth for a better understand-

ing of the stress accumulation pattern in the region. Such studies can be carried out by

developing suitable mathematical models incorporating the essential features of the local ge-

ological structure and the earthquake faults situated in the region. In the present paper, the

lithosphere-asthenosphere system has been taken to be represented by a layered model con-

sisting of an elastic layer of finite depth overlying and is welded contact with a viscoelastic
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half space. In most of the earlier studies (e.g.Steketee,J.A. [29], Maruyama,T. [14], Rybicki,K.

[26], Sato,R. [27, 28], Chinnery,M.A. [4, 5, 6, 7, 8, 9], Rani,S., Sing,S. [24, 25], Mukhopad-

hyay,et.al. [16, 17, 18, 19, 20, 21, 22], Brink,U.S. et.al. [1], Martin,F.L. [13], Oglesby, D.

[23], Ide,S. [11], Fowler,A.C. [10]) the faults are usually taken as single planar fault, but

in reality the earthquake faults are not planar, but consist of a number of planar segments.

In view of this a long, buried, strike-slip fault F having two adjacent planar parts F1 and F2

is taken to be situated in the model with the part F1 in the layer and F2 in the half space

with a common line of joint on the surface of separation. Tectonic forces, primarily due to

mantle convection, results in accumulation of shear stress in the vicinity of the fault, which,

in turn lead to a sudden movement across either F1 and or F2 causing earthquakes, when the

accumulated stress exceeds the frictional and cohesive forces across the fault. The sudden

movement across the fault induces significant in changes the stress accumulation pattern in

the region. The present paper has stressed upon these aspect in detail and tried to correlate

such changes with the prediction of next major seismic event.

2. Formulation

We consider a simple theoretical model of the lithosphere-asthenosphere system with a

locked buried and long, non-planar strike-slip fault consisting of two planar parts F1 and F2

with edges parallel to the free surface. The first part F1 which is situated in elastic layer

of depth H inclined at an angle θ1 with horizontal and second part F2 which is situated in

viscoelastic half-space inclined at an angle θ2 with horizontal.

We introduce a rectangular Cartesian coordinate system (y1, y2, y3) with origin o at free

surface with the plane free surface y3 = 0 and y1 axis is taken along the straight line on the

free surface which is parallel to upper edge of the fault. The boundary between layer and

half-space is given by y3 = H.

For convenience of the analysis we introduce another two rectangular system of Carte-

sian coordinates (y ′1, y ′2, y ′3) and (y ′′1 , y ′′2 , y ′′3 ) associate with the parts F1 and F2 of the fault

respectively with origin at o′(0,0, d1) for first and o′′(0, l1cos θ1, d1+ l1sin θ1) for second part.

The plane of first part F1 of the fault is given by the plane y ′2 = 0 and the plane of second

part F2 of the fault is given by the plane y ′′2 = 0. With this choice of axes the layered medium

occupies the region 0 ≤ y3 ≤ H and the half space occupies the region y3 ≥ H. While the

fault is given by (F1 : y ′2 = 0,0≤ y ′3 ≤ l1 and F2 : y ′′2 = 0,0≤ y ′′3 ≤ l2). The relations between

(y1, y2, y3),(y
′
1, y ′2, y ′3) and (y ′′1 , y ′′2 , y ′′3 ) are given by:

y1 = y ′1,

y2 = y ′2sin θ1+ y ′3cos θ1,

y3 =−y ′2cos θ1+ y ′3sin θ1+ d1,

and

y1 = y ′′1 ,

y2 = y ′′2 sin θ2+ y ′′3 cos θ2+ l1cos θ1,

y3 = −y ′′2 cos θ2+ y ′′3 sin θ2+ l1sin θ1.
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A section of the theoretical model by the plane y1 = 0 has been shown in Figure 1 in

which the coordinate axes (y2, y3), (y
′
2, y ′3) and (y ′′2 , y ′′3 ) have also been identified.

Figure 1: Section of the model by the plane y1 = 0 and coordinate system.

We assume that the length of the faults are large compared to their depths, so that the

displacements, stresses and strains may be taken to be independent of y1 and dependent on

y2, y3 and time t. With this assumption, the components of displacement, stress and strain u1,

(τ12,τ13) and (e12, e13) in the elastic layer and u′1, (τ′12,τ′13) and (e′12, e′13) in the viscoelastic

half space are found to be associated with the strike-slip movement of the fault. The material

of the half-space is assumed to be linearly viscoelastic and of the Maxwell type.

We start with a situation when the model is in a quasi-static, aseismic state and is under-

going slow, aseismic deformations, with a shear stress τ∞ in the model far away from the

fault maintained by some tectonic forces arising possibly due to mantle convection and or

other geological changes. We measure the time t from a suitable instant in the aseismic state

of the model, before any fault movement occurs.

For the elastic layer,the constitutive equations are taken to be

τ12 = µ1
∂ u1

∂ y2

τ13 = µ1
∂ u1

∂ y3







(1)

0≤ y3 ≤ H, −∞ < y2 <∞,

where µ1 is the rigidity of the elastic layer.
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For the viscoelastic half-space of Maxwell type, the constitutive equations are

( 1

η
+ 1

µ2

∂

∂ t
)τ′12 =

∂ 2u′1
∂ t∂ y2

( 1

η
+ 1

µ2

∂

∂ t
)τ′13 =

∂ 2u′1
∂ t∂ y3







(2)

y3 ≥ H, t ≥ 0, −∞ < y2 <∞,

where µ2 and η are the effective rigidity and viscosity respectively. We consider quasi-static

aseismic deformation of the system when the inertial terms in the stress equations of motion

are small and can be neglected, as explained by Mukhopadhyay et.al. [19]. For such aseismic

deformation the stresses satisfy the relations

∂ τ12

∂ y2
+
∂ τ13

∂ y3
= 0 (0≤ y3 ≤ H)

∂ τ′12

∂ y2
+
∂ τ′13

∂ y3
= 0 (y3 ≥ H)







. (3)

From (1), (2) and (3) we find that

∂

∂ t
(∇2u1) = 0,

and
∂

∂ t
(∇2u′1) = 0

which are satisfied if

∇2u1 = 0 (0≤ y3 ≤ H)

∇2u′1 = 0 (y3 ≥ H)

«

(4)

(t ≥ 0,−∞ < y2 <∞).

We assume that the upper surface of the layer is stress-free and the upper layer is in welded

contact with the half-space. Then the displacements and stresses would satisfy the following

boundary conditions:

τ13 = 0 at y3 = 0,

τ13 = τ
′
13 at y3 = H,

u1 = u′1 at y3 = H,

τ′13→ 0 as y3→ ∞,







(5)

(t ≥ 0,−∞ < y2 <∞).

We assume that tectonic forces result in a shear strain far away from the fault which may

changes with time. We then have the following boundary conditions:

e12→ (e12)0∞ + g(t)

e′12→ (e′12)0∞ + g(t)

«

(6)



S. Sen, A. Karmakar / Eur. J. Math. Sci., 2 (2013), 178-208 182

as |y2| →∞ for t ≥ 0,

where

(e12)0∞ = lim
|y2| to∞

(e12)0

(e′12)0∞ = lim
|y2| to∞

(e′12)0,

where (e12)0, (e′12)0 are the values of e12 and e′12 at t = 0 and g(t) is a continuous function of

t such that g(0) = 0. Same g(t) is taken for both e12 and e′12, since the media are in welded

contact.

2.1. Initial Conditions:

We measure time t from a suitable instant when the model is in aseismic state and there is

no seismic disturbance in it. (u1)0, (u′1)0 (τ12)0, (τ′12)0, (τ13)0, (τ′13)0, (e12)0, (e′12)0, (e13)0,

(e′13)0 are values of u, u′, τ12, τ′12, τ13, τ′13, e12, e′12, e13, e′13 at time t = 0 and they satisfy the

relations (1)–(6).

2.2. Displacements, Stresses and Strains in the Absence of Fault Movement:

We start with the situation when the system is in aseismic state. In this case displacements,

stresses and strains are continuous throughout the system and all the equations and boundary

conditions given in (1)–(6) are valid. To obtain the solutions for displacements, stresses and

strains in absence of any fault movement, we take Laplace transformations of (1)–(6) with

respect to time t. This gives us a boundary value problem which can be solved easily. Finally,

on inverting the Laplace transforms we get the following solutions

u1 = (u1)0+ y2 g(t)

τ12 = (τ12)0+µ1 g(t),

τ13 = (τ13)0,

e12 = (e12)0+ g(t),

τ12 = (τ12)0+µ1sin θ g(t),















(7)

u′1 = (u
′
1)0+ y2 g(t),

τ′12 = (τ
′
12)0ex p(−µ2 t

η
) +µ2

t
∫

0

g1(τ)ex p{−µ2(t−τ)
η
}dτ,

τ′13 = (τ
′
13)0ex p(−µ2 t

η
)

e′12 = (e
′
12)0+ g(t)



















, (8)

where g1(t) =
d

d t
{g(t)}.

We assume that the strain e12 and e′12 gradually increases under the action of τ∞. So

that both g(t) and g1(t) are taken to be increasing functions of time t. From (7) and (8)

we find that both τ12 and τ′12 increase with time. When the accumulated stresses exceeds

some threshold values the fault parts F1 and F2 undergo sudden movement resulting in an

eartquake.
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2.3. Displacements, Stresses and Strains after the Restoration of Aseismic State

Following a Sudden Strike-slip Movement Across the Fault part F :

The sudden movement across F has two constitutive parts– movement across F1 and at the

same time a movement across F2. We first consider the effect of sudden movement across F1.

It is to be noted that due to the sudden fault movement across the fault F , the accumulated

stress will be released at least to some extent and the fault becomes locked again when the

shear stress near the fault has sufficiently been released. For a comparatively short period of

time, during and after the sudden fault movement when the seismic disturbances generated by

this fault movement are still present in the vicinity of the fault, the inertial forces are not small

and can not be neglected. We leave out this short period of time, during and immediately

after sudden fault movement and consider the model after the restoration of the aseismic

state, which happens when the seismic disturbances near the fault gradually disappear. We

shall determine the displacements, stresses and strains during the second phase of aseismic

state with respect to new time origin t = 0, denoting the instant at which this aseismic state

has been restored in the system after sudden fault movement.

We note that, for period t ≥ 0 (corresponding to the new phase of aseismic state of the

model re-established after the sudden fault movement), the inertial forces again become very

small and are therefore neglected, so that all the equations from (1)–(6) are valid in this case

also. The displacements, stresses and strains are continuous everywhere except for the fault

F1, F2. The displacement component u1 has a discontinuity which characterises the sudden

fault movement across the fault F1 given by the following conditions:

[u1] = U1 f1(y
′
3) across F1 (y

′
2 = 0, 0≤ y ′3 ≤ l1, t ≥ 0), (9)

where [u1] is the discontinuity of u1 across F1 defined as

[u1] = lim
y ′

2
→0+
(u1)− lim

y ′
2

to0−
(u1),

and f1(y
′
3) is a continuous function of y ′3 giving the dependence of the relative displacement

across F1 on the depth along the fault part F1 and U1 is a constant, independent of y ′2, y ′3.

Similarly, for sudden movement across F2, we have:

[u′1] = U2 f2(y
′′
3 ) across F2 (y

′′
2 = 0, 0≤ y ′′3 ≤ l2, t ≥ 0), (10)

where [u′1] is the discontinuity of u′1 across F2 defined as

[u′1] = lim
y ′′2 to0+

(u′1)− lim
y ′′2 to0−

(u′1),

and f2(y
′′
3 ) is a continuous function of y ′′3 giving the dependence of the relative displacement

across F2 on the depth along the fault part F2 and U2 is a constant, independent of y ′′2 , y ′′3 .

The stresses and strains τ12, τ13, τ′12, τ′13, e12, e′12 are continuous everywhere in the

model.
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We try to obtain displacements and stresses for t ≥ 0 (with new time origin) due to

movement across F1 in the form

u1 = (u1)1+ (u1)2,

τ12 = (τ12)1+ (τ12)2,

τ13 = (τ13)1+ (τ13)2,

u′1 = (u
′
1)1+ (u

′
1)2,

τ′12 = (τ
′
12)1+ (τ

′
12)2,

τ′13 = (τ
′
13)1+ (τ

′
13)2























, (11)

where (u1)1, (τ12)1, . . . , (τ′13)1 satisfy relations (1)–(8) are continuous everywhere in the

model. The solutions for (u1)1, (τ12)1, . . . , (τ′13)1 are therefore given by

(u1)1 = (u1)p + y2 g(t),

(τ12)1 = (τ12)p +µ1 g(t),

(τ13)1 = (τ13)p,







(12)

(u′1)1 = (u
′
1)p + y2 g(t),

(τ′12)1 = (τ
′
12)pex p(−µ2 t

η
) +µ2

t
∫

0

g1(τ)ex p{−µ2(t−τ)
η
}dτ,

(τ′13)1 = (τ
′
13)pex p(−µ2 t

η
)











, (13)

where (u1)p, (u′1)p, . . . , (τ′13)p are the values of (u1)1, (u′1)1, . . . , (τ′13)1 at time t = 0

(i.e. the new time origin) satisfying all conditions from (1)–(8) and g1(t) =
d

dt
g(t) and

(u1)2, (u′1)2, . . . , (τ′13)2 satisfy the relations (1)–(5) and the dislocation condition (9) to-

gether with the following conditions:

(e12)→ 0 as |y2| →∞ for t ≥ 0,

(e′12)→ 0 as |y2| →∞ for t ≥ 0

«

. (14)

Thus (u1)2, (u′1)2, . . . , (τ′13)2 satisfy the following relations

(τ12)2 = µ1
∂

∂ y2
(u1)2,

(τ13)2 = µ1
∂

∂ y3
(u1)2,







(15)

−∞ < y2 <∞, 0≤ y3 ≤ H, t ≥ 0

( 1

η
+ 1

µ2

∂

∂ t
)(τ′12)2 =

∂ 2(u′1)2

∂ t∂ y2

( 1

η
+ 1

µ2

∂

∂ t
)(τ′13)2 =

∂ 2(u′1)2

∂ t∂ y3







(16)

−∞ < y2 <∞, y3 ≥ H, t ≥ 0
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∂

∂ y2
(τ12)2+

∂

∂ y3
(τ13)2 = 0, 0≤ y3 ≤ H

∂

∂ y2
(τ′12)2+

∂

∂ y3
(τ′13)2 = 0, y3 ≥ H







(17)

−∞ < y2 <∞, t ≥ 0

∇2(u1)2 = 0, 0≤ y3 ≤ H

∇2(u′1)2 = 0, y3 ≥ H

«

(18)

−∞ < y2 <∞, t ≥ 0

(τ13)2 = 0 at y3 = 0

(τ13)2 = (τ
′
13)2 at y3 = H

(u1)2 = (u
′
1)2 at y3 = H

(τ′13)2 to0 as y3 to∞







(19)

−∞ < y2 <∞, t ≥ 0

(e12)2 to0

(e′12)2 to0

«

(20)

as |y2|to∞, t ≥ 0

and

[(u1)2] = U1 f1(y
′
3) across F1 : (y ′2 = 0, 0≤ y ′3 ≤ l1, t ≥ 0)

©

. (21)

To obtain the solutions for (u1)2, (u′1)2, . . . , (τ′13)2 satisfying the above relations, we take

Laplace transforms of these relations with respect to t. The resulting boundary value problem

involving (u1)2, (u′1)2, . . . , (τ′13)2, which are the Laplace transforms of (u1)2, (u′1)2, . . . , (τ′13)2
respectively with respect to t, can be solved by using a modified form of Green’s function tech-

nique developed by Maruyama,T. [15] and Rybicki,K. [26] as explained in the appendix. On

taking inverse Laplace transforms, we obtain the complete solutions for (u1)2, (u′1)2, . . . , (τ′13)2
for t ≥ 0. Finally we obtain the complete solutions u1,u′1, . . . ,τ′13 from (11) as follows:

u1(y2, y3, t) = (u1)p + y2 g(t) +
U1

2π
ψ1(y2, y3, t)

e12(y2, y3, t) = (e12)p + g(t) +
U1

2π
ψ2(y2, y3, t)

τ12(y2, y3, t) = (τ12)p +µ1 g(t) +
µ1U1

2π
ψ2(y2, y3, t)

τ13(y2, y3, t) = (τ13)p +
µ1U1

2π
ψ3(y2, y3, t)

τ1′2′ = τ12sin θ1−τ13cos θ1

u′1(y2, y3, t) = (u′1)p + y2 g(t) +
U1

π
φ1(y2, y3, t)

τ′12(y2, y3, t) = (τ′12)pex p(−µ2 t

η
) +µ2

t
∫

0

g1(τ)ex p{−µ2(t−τ)
η
}dτ+ U1

π
φ2(y2, y3, t)

τ′13(y2, y3, t) = (τ′13)pex p(−µ2 t

η
) +

U1

π
φ3(y2, y3, t)

τ′
1′′2′′
= τ′12sin θ2−τ

′
13cos θ2































































,

(22)
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where ψ1,ψ2,ψ3 and φ1,φ2,φ3 are given in the appendix.

Due to movement of fault part F2 the displacement component (u1)3, stress components

(τ12)3, (τ13)3 of elastic layer satisfies equations (1)–(5) and displacement component (u′1)3,

stress components (τ′12)3, (τ′13)3 of viscoelastic half-space satisfies also equations (1)–(5) and

also they satisfies dislocations condition (9) together with the conditions

(e12)3→ 0 as |y2|to∞ for t ≥ 0,

(e′12)3→ 0 as |y2|to∞ for t ≥ 0.

Using the similar method we get the solution as

(u1)3(y2, y3, t) =
U2

π
ψ′1(y2, y3, t)

(e12)3(y2, y3, t) =
U2

π
ψ′2(y2, y3, t)

(τ12)3(y2, y3, t) =
µ1U2

π
ψ′2(y2, y3, t)

(τ13)3(y2, y3, t) =
µ1U2

π
ψ′3(y2, y3, t)

(u′1)3(y2, y3, t) =
U2

2π
φ′1(y2, y3, t)

(τ′12)3(y2, y3, t) =
U2

2π
φ′2(y2, y3, t)

(τ′13)3(y2, y3, t) =
U2

2π
φ′3(y2, y3, t)



















































































, (23)

where the explicit form of functions ψ′1, ψ′2, ψ′3, φ′1, φ′2, φ′3 are given by (A30), (A31),

(A32), (A34), (A35), (A36) respectively in the appendix.

The complete solution is given by

u1 = (u1)1+ (u1)2+ (u1)3,

e12 = (e12)1+ (e12)2+ (e12)3,

τ12 = (τ12)1+ (τ12)2+ (τ12)3,

τ13 = (τ13)1+ (τ13)2+ (τ13)3,

u′1 = (u
′
1)1+ (u

′
1)2+ (u

′
1)3,

τ′12 = (τ
′
12)1+ (τ

′
12)2+ (τ

′
12)3,

τ′13 = (τ
′
13)1+ (τ

′
13)2+ (τ

′
13)3































. (24)

It is found that for sudden movement the displacements, stresses and strains will be finite

and single valued everywhere in the model, if the following conditions are satisfied: For

f1(y
′
3) :

i) f1(y
′
3), f ′1(y

′
3) are continuous functions of y ′3 for 0≤ y ′3 ≤ l1

ii) f ′1(0) = 0.
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iii) f ′′1 (y
′
3) is continuous in 0 ≤ y ′3 ≤ l1 except for a finite number of points of finite dis-

continuity in 0 ≤ y ′3 ≤ l1 or, f ′′1 (y
′
3) is continuous in 0 < y ′3 < l1 and there exist real

constants m, n < 1 such that (y ′3)
m f ′′1 (y

′
3)→ 0 or to a finite limit as y ′3 → 0+ and that

(l1− y ′3)
n f ′′(y ′3)→ 0 or to a finite limit as y ′3→ l−0

1 .

For f2(y
′′
3 ) :

i) f2(y
′′
3 ), f ′2(y

′′
3 ) are continuous functions of y ′′3 for 0≤ y ′′3 ≤ l2.

ii) f2(l2) = 0 and f ′2(0) = f ′2(l2) = 0.

iii) Either f ′′2 (y
′′
3 ) is continuous in 0 ≤ y ′′3 ≤ l2 or, f ′′2 (y

′′
3 ) is continuous in 0 ≤ y ′′3 ≤ l2

except for a finite number of points of finite discontinuity in 0 ≤ y ′′3 ≤ l2 or, f ′′2 (y
′′
3 )

is continuous in 0 < y ′′3 < l2 and there exist real constants m, n < 1 such that (l2 −
y ′′3 )

m f ′′2 (y
′′
3 ) → 0 or to a finite limit as y ′′3 → l−0

2 and (y ′′3 )
n f ′′2 (y

′′
3 ) → 0 or to a finite

limit as y ′′3 → 0+0.

3. Results and Discussions

The following values of the model parameters are taken for numerical computations: l1 =

10 km., l2= 12 km. are length of the fault parts F1 and F2 respectively.

H= width of the elastic layer= 40 km, representing the upper part of the lithosphere (the

crust).

µ1=the rigidity of the elastic layer= 3.0×1011 dyne/sq.cm.

µ2=the effective rigidity of the viscoelastic half space representing the asthenosphere (up

to depth of about 600 km)= 3.78×1011 dyne/sq.cm.

η= the viscosity of the half space = 3×1021 poise.

U1 = 40 cm and U2 = 40 cm, are slip across the fault F1 and F2 respectively.

The above values are taken from different books and research publications (e.g. Cathles

[2], Chift, P.et.al. [3], Karato,S. [12]).

We carried out the numerical computations with the following choice of f1(y
′
3) and f2(y

′′
3 ):

f1(y
′
3) = 1− (

y ′3
l1
)2 + 1

2
(

y ′3
l1
)3 and f2(y

′′
3 ) =

(y ′′23 −l2
2)

2

2l4
2

. The depth dependence of f1 and f2 are

so chose in a way that the continuity at the common edge be maintained i.e. f1(at y ′3 =

l1) = f2(at y ′′3 = l2) = k is chosen as 1

2
(may be taken otherwise). This continuity condition

however violated the conditions stated earlier for bounded stress even at the common edge.

However, stress very close to this common edge are found to be bounded.

We compute the following quantities:

i) Additional surface displacement due to fault movement

W = [u1−(u1)1− y2 g(t)]y3=0 at t = 0, just after the commencement of the fault creep.

=
U1

2π
ψ1+

U2

π
ψ′1 for different values of θ1 and θ2 (Figures 2 and 3).
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ii) Surface shear strain (Rs) given by

Rs = [e12−(e12)p− g(t)]y3
= 0 at t = 0, just after the commencement of the fault creep.

=
U1

2π
ψ2+

U2

π
ψ′2 (Figures 4 and 5).

iii) Variation of shear stress τ12 with depth within the elastic layer and viscoelastic half

space are respectively given by

(τ12) =τ12− (τ12)p −µ1 g(t)

=
µ1U1

2π
ψ2+

µ1U2

π
ψ′2 (in Figure 6)

and

(τ12)
′ =τ′12− (τ

′
12)pe

−
µ2
η

t
+µ2

t
∫

0

g1(τ)ex p{−
µ2

η
(t −τ)}dτ

=
U1

π
φ2+

U2

2π
φ′2 (in Figure 7).

iv) Variation of shear stress τ13 with depth within the elastic layer and viscoelastic half

space are respectively given by

(τ13) =τ13− (τ13)p

=
µ1U1

2π
ψ3+

µ1U2

π
ψ′3 (in Figure 8)

and

(τ13)
′ =τ′13− (τ

′
13)pe

−
µ2
η

t

=
U1

π
φ3+

U2

2π
φ′3 (in fig. 9).

v) The stress pattern changes due to the presence of an elastic layer over lying the vis-

coelastic half space when compared with the half space model. (T12) represent these

changes due to presence of the layer given by:

T12 = sin θ1(
µ1U1

2π
× series part of ψ2+

µ1U2

π
× series part of ψ′2)

− cos θ1(
µ1U1

2π
× series part of ψ3+

µ1U2

π
× series part of ψ′3) (in Figure 10).

Figures 2 and 3 show the surface displacements due to the fault movements across F1 and

F2 after one year with different combinations of θ1 and θ2. For θ1 = θ2 =
π

2
, the surface dis-

placement curve is anti-symmetric. In each case there are regions of displacements is opposite

directions with one maximum in each direction. The magnitude of surface displacements is
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of the order of (-2) cm to (+3) cm, depending on θ1 and θ2. As we move away from the fault

|W | → 0 as expected.

Figures 4 and 5 show the change in surface shear strain immediately after the sudden

movement across F1 and F2, for different values of θ1 and θ2. It is found from these figures

that movement across the part F1 is more pronounced on the change of surface shear shear

strain. In both the cases, the magnitude of strain is of the order of 10−7, which is good

agreement with the observed value. The changes in shear strain is found to be maximum near

the faults and gradually die out as we move away from the fault.

Figure 6 indicates the changes in shear stress τ12 with depth in the layer 10 years after

the re-establishment of aseismic state following the sudden movement across F1 and F2 along

a vertical at which y2 = 15 km. It is found that there is a region of marginal accumulation up

to a depth of about 15 km and thereafter the accumulated stresses reduce to some extent due

to the sudden movement across the fault. The magnitude of stress enhancement reduction

depends on the angles θ1 and θ2.

Figure 7 show the variations of shear stress τ12 with depth in the half space due to fault

movement along a vertical through y2 = 15 km one year after sudden movement. For vertical

fault (θ1 = θ2 =
π

2
), the changes are negligibly small. It is found that in most of the region

in the half space there are stress reduction up to a depth of about 70 km from the the free

surface. The magnitude of stress reduction however does not exceed 45 bars. The reduction

attains maximum values at a depth of about (30-45) km, that is just below the lower edge of

the fault segment F2. The effect of the fault movement dies out beyond y3 = 70 km.

Figues 8 and 9 show the changes in the stress component(τ13) induced by the fault move-

ment in the layer and in the half space respectively along vertical at which y2 = 15 km one

year after the re-establishment the aseismic state following the sudden movement across the

fault. In the layer there are a region of stress accumulation up to a depth about 35 km fol-

lowed by the narrow region of about 5 km depth where accumulated stress are reduced due

to fault movement. The angles of inclination of the fault parts F1 and F2 do not have much

influence on the changes in the stress pattern. In the layer however the entire region is a

stress reducing region indicating that accumulated stress in this region will be reduced some

extent due to the sudden movement of the faults. The effects become negligibly small at a

depth greater than or equal to 70 km from the free surface.

A comparative studying for layered model and half space model of the liyhosphere- as-

thenosphere system:

Most often the liyhosphere- asthenosphere system are modelled by taking an elastic layer

overlying the viscoelastic half space. An attempt has been made to identify the extent to

which in stress accumulation pattern due to fault movement differ if we stress upon a single

half space model instead of a layered model.

In the expression for stresses given in equation (24) the part involving infinite series are

due to the presence of the elastic layer. Numerical computations show that contribution of

this part remain well below the value 0.1 bar at a point for which y2 = 2 km and y3 = 10

km increasing very slowly with time ( 0.0002 bar/year (Figure 10)). The ratio of change in

magnitude of τ12 for half space model and layered model is found to be (400:1) indicating

that a half space model quite reasonable for representing lithosphere-asthenosphere system.
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Figure 2: Additional surface displacement due to fault movement.

Figure 3: Additional surface displacement due to fault movement.
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Figure 4: Change in shear strain.

Figure 5: Change in shear strain.
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Figure 6: Variation of shear stress with depth in elastic layer.

Figure 7: Variation of shear stress with depth in viscoelastic half space.
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Figure 8: Variation of shear stress with depth in elastic layer.
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Figure 9: Variation of shear stress with depth in viscoelastic half space.

Figure 10: Changes in stress pattern due to presence of an elastic layer overlying the viscoelastic half space.
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Appendix

Displacements, stresses and strains after the restoration of aseismic state following a

sudden strike-slip movement across the fault– Method of solution. Due to movement

of fault part F1, we try to obtain the solutions for displacements and stresses in the

following form:

u1 = (u1)1+ (u1)2
τ12 = (τ12)1+ (τ12)2
τ13 = (τ13)1+ (τ13)2
u′1 = (u

′
1)1+ (u

′
1)2

τ′12 = (τ
′
12)1+ (τ

′
12)2

τ′13 = (τ
′
13)1+ (τ

′
13)2























, (A1)

where (u1)1, (τ12)1, . . . , (τ′13)1 are given by (12) and (13). The components of (u1)2, (τ12)2,

. . . , (τ′13)2 satisfying the relations (15)–(21). To obtain the solutions we take the Laplace

transforms of these relations with respect to t and we get

(τ̄12)2 = µ1
∂

∂ y2
(ū1)2

(τ̄13)2 = µ1
∂

∂ y3
(ū1)2







(A2)

−∞ < y2 <∞, 0≤ y3 ≤ H, t ≥ 0

(τ̄′12)2 = µ̄2
∂

∂ y2
(ū′1)2

(τ̄′13)2 = µ̄2
∂

∂ y3
(ū′1)2







(A3)

−∞ < y2 <∞, y3 ≥ H, t ≥ 0,

where µ̄2 =
p

p

µ2
+ 1

η

∂ (τ̄12)

∂ y2
+
∂ (τ̄13)

∂ y3
= 0 (0≤ y3 ≤ H)

∂ (τ̄′12)

∂ y2
+
∂ (τ̄′13)

∂ y3
= 0 (y3 ≥ H)







(A4)

−∞ < y2 <∞, y3 ≥ H, t ≥ 0

∇2(ū1)2 = 0 (0≤ y3 ≤ H)

∇2(ū′1)2 = 0 (y3 ≥ H)







(A5)

(t ≥ 0,−∞ < y2 <∞)
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(τ̄13)2 = 0 at y3 = 0

(τ̄13)2 = (τ̄
′
13)2 at y3 = H

(ū1)2 = (ū
′
1)2 at y3 = H

(τ̄′13)2to0 as y3to∞







(A6)

−∞ < y2 <∞, t ≥ 0

(ē12)2→ 0

(ē′12)2→ 0

«

(A7)

as |y2|to∞, t ≥ 0,

and

[(ū1)2] =
U1

p
f1(y

′
3) across F1 : (y ′2 = 0, 0≤ y ′3 ≤ l1, t ≥ 0)

o

, (A8)

where {(ū1)2, . . . , (τ̄′13)2}=
∞
∫

0

{(ū1)2, . . . , (τ̄′13)2}e
−pt d t, p being the Laplace variable.

The boundary value problem (A1)–(A8) can be solved by using a modified Green’s func-

tion technique developed by Maruyama [15] and Rybicki [26] and following them we get

(ū1)2(Q) =

∫

F1

[(ū1)2(P)][G12(P,Q)d x3− G13(P,Q)d x2] , (A9)

where Q(y1, y2, y3) is any point in the layer and P(x1, x2, x3) is any point on the fault and

[(ū1)2(P)] is the magnitude of discontinuity in (ū1)2 across F1 at P is equal to
U1

p
f (y ′3) in our

model. For the half space we have

(ū′1)2(Q1) =

∫

F1

[(ū′1)2(P)][G
′
12(P,Q1)d x3− G′13(P,Q1)d x2] , (A10)

where Q1(y1, y2, y3) is any point in the half space.

In (A9)

G13(P,Q) = µ1
∂

∂ x3
G1(P,Q)

G12(P,Q) = µ1
∂

∂ x2
G1(P,Q)







, (A11)

where

G1(P,Q) =−
1

2πµ1
[ln
p

(x2− y2)
2+ (x3− y3)

2 +

ln
p

(x2− y2)
2+ (x3+ y3)

2 +
∞
∑

n=1

(
µ1−µ̄2

µ1+µ̄2
)m{ln
p

(x2− y2)
2+ (x3− 2mH − y3)

2 +

ln
p

(x2− y2)
2+ (x3− 2mH + y3)

2 +

ln
p

(x2− y2)
2+ (x3+ 2mH − y3)

2 +

ln
p

(x2− y2)
2+ (x3+ 2mH + y3)

2}







































. (A12)
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Now P(x1, x2, x3) being a point on the fault F1, 0 ≤ x2 ≤ l1 cos θ1, 0 ≤ x3 ≤ l1 sin θ1

and x2 = x3 cot θ1. A change in coordinate axes from (x1, x2, x3) to (ξ′1,ξ′2,ξ′3) connected

by the relations x1 = ξ
′
1, x2 = ξ

′
2 sin θ1 + ξ′3 cos θ1 and x3 = −ξ

′
2 cos θ1 + ξ′3 sin θ1, is

introduced so that ξ′2 = 0 and 0≤ ξ′3 ≤ l1 on F1.

Thus we get,

(ū1)2(Q) =
U1

2πp

l1
∫

0

f (ξ′3)[
y2sin θ1−(y3−d1)cos θ1

A1
+

y2sin θ1+(y3+d1)cos θ1

A2
+

∞
∑

m=1

(
µ1−µ̄2

µ1+µ̄2
)m{ y2sin θ1−2mHcos θ1−(y3−d1)cos θ1

A3
+

y2sin θ1−2mHcos θ1+(y3+d1)cos θ1

A4
+

y2sin θ1+2mHcos θ1−(y3−d1)cos θ1

A5
+

y2sin θ1+2mHcos θ1+(y3+d1)cos θ1

A5
}]dξ′3

,

where
A1 = ξ

′2
3 − 2ξ′3{y2cos θ1+ (y3− d1)sin θ1}+ y2

2 + (y3− d1)
2

A2 = ξ
′2
3 − 2ξ′3{y2cos θ1− (y3− d1)sin θ1}+ y2

2 + (y3− d1)
2

A3 = ξ
′2
3 − 2ξ′3{y2cos θ1+ (y3− d1)sin θ1+ 2mHsin θ1}+
y2

2 + (y3− d1)
2+ 4(y3− d1)sin θ1+ 4m2H2

A4 = ξ
′2
3 − 2ξ′3{y2cos θ1− (y3+ d1)sin θ1+ 2mHsin θ1}+
y2

2 + (y3− d1)
2− 4(y3− d1)mH + 4m2H2

A5 = ξ
′2
3 − 2ξ′3{y2cos θ1+ (y3− d1)sin θ1− 2mHsin θ1}+
y2

2 + (y3− d1)
2− 4(y3− d1)mH + 4m2H2

A6 = ξ
′2
3 − 2ξ′3{y2cos θ1− (y3+ d1)sin θ1− 2mHsin θ1}+
y2

2 + (y3+ d1)
2+ 4(y3+ d1)mH + 4m2H2

.

Taking inverse Laplace transform we get,

(u1)2 =
U1

2π
ψ1(y2, y3, t) , (A13)

where

ψ1(y2, y3, t) =

l1
∫

0

f1(ξ
′
3)[

y2sin θ1−(y3−d1)cos θ1

A1
+

y2sin θ1+(y3+d1)cos θ1

A2
]dξ′3+

∞
∑

m=1

(α
β
)mAm(t)

l1
∫

0

f1(ξ
′
3){

y2sin θ1−2mHcos θ1−(y3−d1)cos θ1

A3
+

y2sin θ1−2mHcos θ1+(y3+d1)cos θ1

A4
+

y2sin θ1+2mHcos θ1−(y3−d1)cos θ1

A5
+

y2sin θ1+2mHcos θ1+(y3+d1)cos θ1

A6
}dξ′3























































. (A14)
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From (15) we get,

(τ12)2 =
µ1U1

2π

∂

∂ y2
ψ1(y2, y3, t)

=
µ1U1

2π
ψ2(y2, y3, t), (A15)

where

ψ2(y2, y3, t) =

l1
∫

0

f1(ξ
′
3)[

ξ′23 sin θ1+{(y3−d1)
2−y2

2 }sin θ1+2y2(y3−d1)cos θ1−2ξ′3(y3−d1)

A2
1

+

ξ′23 sin θ1+{(y3+d1)
2−y2

2 }sin θ1−2y2(y3+d1)cos θ1+2ξ′3(y3+d1)

A2
2

]dξ′3+

∞
∑

m=1

(α
β
)mAm(t)

l1
∫

0

f1(ξ
′
3)[

1

A2
3

{ξ′23 sin θ1+ {(y3− d1+ 2mH)2− y2
2}×

sin θ1+ 2y2(y3− d1+ 2mH)cos θ1−
2ξ′3(y3− d1+ 2mH)}+
1

A2
4

{ξ′23 sin θ1+ {(y3+ d1− 2mH)2− y2
2}×

sin θ1− 2y2(y3+ d1− 2mH)cos θ1+

2ξ′3(y3+ d1− 2mH)}+
1

A2
5

{ξ′23 sin θ1+ {(y3− d1− 2mH)2− y2
2}×

sin θ1+ 2y2(y3− d1− 2mH)cos θ1−
2ξ′3(y3− d1− 2mH)}+
1

A2
6

{ξ′23 sin θ1+ {(y3+ d1+ 2mH)2− y2
2}×

sin θ1− 2y2(y3+ d1+ 2mH)cos θ1+

2ξ′3(y3+ d1+ 2mH)}]dξ′3



















































































































(A16)

and

(τ13)2 = µ1
∂

∂ y3
(u1)2

=
µ1U1

2π
ψ3(y2, y3, t)







, (A17)
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where

ψ3(y2, y3, t) =

l1
∫

0

f1(ξ
′
3)[
−ξ′23 cos θ1+{(y3−d1)

2−y2
2 }cos θ1−2y2(y3−d1)sin θ1+2ξ′3 y2

A2
1

+

ξ′23 cos θ1+{y
2
2−(y3+d1)

2}cos θ1−2y2(y3+d1)sin θ1−2ξ′3 y2

A2
2

]dξ′3+

∞
∑

m=1

(α
β
)mAm(t)

l1
∫

0

f1(ξ
′
3)[

1

A2
3

{−ξ′23 cos θ1+ 2ξ′3 y2−

2y2(y3− d1)sin θ1−
{y2

2 − (y3− d1)
2}cos θ1−

4mH{y2sin θ1− (y3− d1)cos θ1}+
4m2H2cos θ1}+

1

A2
4

{ξ′23 cos θ1− 2ξ′3 y2−

2y2(y3+ d1)sin θ1+

{y2
2 − (y3+ d1)

2}cos θ1+

4mH{y2sin θ1+ (y3+ d1)cos θ1}−
4m2H2cos θ1}+

1

A2
5

{−ξ′23 cos θ1+ 2ξ′3 y2−

2y2(y3− d1)sin θ1−
{y2

2 − (y3− d1)
2}cos θ1+

4mH{y2sin θ1− (y3− d1)cos θ1}+
4m2H2cos θ1}+ θ1}+

1

A2
6

{ξ′23 cos θ1−

2ξ′3 y2− 2y2(y3+ d1)sin θ1+

{y2
2 − (y3+ d1)

2}cos θ1−
4mH{y2sin θ1+ (y3+ d1)cos θ1}−
4m2H2cos θ1}]dξ

′
3



























































































































































,

(A18)

where

s =
µ2

µ1
, α=

µ1

µ2
− 1, β =

µ1

µ2
+ 1, a1 =

µ1µ2

η(µ1+µ2)
, b1 =

2µ1µ
2
2

η(µ2
1−µ

2
2)

en(z) = 1+ z

1!
+ z2

2!
+ + zn

n!
, e0(z) = 1,

Am(t) = 1+
m
∑

r=1

�m

r

�

( 2s

1−s
)r{1− e−a1 t en(a1 t)}

Brm =
�m

r

�

br
1, Arm =
�m

r

�

(
b1

a1
)r .

From the above solutions we can compute the strain

e12 =
∂ u1

∂ y2
. (A19)

In case of half space

G′13(P,Q1) = µ1
∂

∂ x3
G′1(P,Q1),

G′12(P,Q1) = µ1
∂

∂ x2
G′1(P,Q1),
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where

G′1(P,Q1) =−
1

π(µ1+µ̄2)
[log
p

(x2− y2)
2+ (x3− y3)

2 +

log
p

(x2− y2)
2+ (x3+ y3)

2 +
∞
∑

m=1

(
µ1−µ̄2

µ1+µ̄2
)m{log
p

(x2− y2)
2+ (x3+ 2mH − y3)

2 +

log
p

(x2− y2)
2+ (x3+ 2mH + y3)

2}]























(A20)

(ū′1)2(Q1) =
U1

p

µ1

π(µ1+µ2)

∫

f1(ξ
′
3)[{

y2sin θ1−(y3−d1)cos θ1

A1
+

y2sin θ1+(y3+d1)cos θ1

A2
}+

∞
∑

m=1

(
µ1−µ̄2

µ1+µ̄2
)m{ y2sin θ1−(y3−d1)cos θ1+2mHcos θ1

A5
+

y2sin θ1+(y3+d1)cos θ1+2mHcos θ1

A6
}]dξ′3

.

Therefore taking inverse Laplace transform we get,

(u′1)2(Q1) =
U1

π
(1−

s

1+ s
e−a1 t)

l1
∫

0

f1(ξ
′
3)[

y2sin θ1− (y3− d1)cos θ1

A1

+
y2sin θ1+ (y3+ d1)cos θ1

A2

]dξ′3

+
U1

π

∞
∑

m=1

(
α

β
)m[1+

m
∑

r=1

�

m

r

�

(
b1

a1

)r{1− e−a1 t er−1(a1 t)} −
s

1+ s
e−a1 t

−
s

1+ s

m
∑

r=1

�

m

r

�

br
1 t r

Γ(r + 1)
e−a1 t]

l1
∫

0

f1(ξ
′
3){

y2sin θ1− (y3− d1)cos θ1+ 2mHcos θ1

A5

+
y2sin θ1+ (y3+ d1)cos θ1+ 2mHcos θ1

A6

}]dξ′3

=
U1

π
φ1(y2, y3, t) , (A21)

where

φ1(y2, y3, t) = (1− s

1+s
e−a1 t)

l1
∫

0

f1(ξ
′
3)[

y2sin θ1−(y3−d1)cos θ1

A1
+

y2sin θ1+(y3+d1)cos θ1

A2
]dξ′3+

∞
∑

m=1

(1−s

1+s
)m[1+

m
∑

r=1

�m

r

�

(
b1

a1
)r{1− e−a1 t er−1(a1 t)} − s

1+s
e−a1 t−

s

1+s

m
∑

r=1

�m

r

� br
1 t r

Γ(r+1)
e−a1 t]

l1
∫

0

f1(ξ
′
3){

y2sin θ1−(y3−d1)cos θ1+2mHcos θ1

A5
+

y2sin θ1+(y3+d1)cos θ1+2mHcos θ1

A6
}]dξ′3



















































.

(A22)
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From (A3) we get

(τ̄′12)2 = µ̄2
∂

∂ y2
(ū′1)2

=
µ̄2U1

p

µ1

π(µ1+µ̄2)

l1
∫

0

f1(ξ
′
3)[

ξ′23 sin θ1+{(y3−d1)
2−y2

2 }sin θ1+2y2(y3−d1)cos θ1−2ξ′3(y3−d1)

A2
1

+

ξ′23 sin θ1+{(y3+d1)
2−y2

2 }sin θ1−2y2(y3+d1)cos θ1+2ξ′3(y3+d1)

A2
2

]dξ′3+

µ̄2U1

p

µ1

π(µ1+µ̄2)

∞
∑

m=1

(
µ1−µ̄2

µ1+µ̄2
)m

l1
∫

0

f1(ξ
′
3)[

1

A2
5

{ξ′23 sin θ1+ {(y3− d1− 2mH)2− y2
2}×

sin θ1+ 2y2(y3− d1− 2mH)cos θ1−
2ξ′3(y3− d1− 2mH)}+
1

A2
6

{ξ′23 sin θ1+ {(y3+ d1+ 2mH)2− y2
2}×

sin θ1− 2y2(y3+ d1+ 2mH)cos θ1+

2ξ′3(y3+ d1+ 2mH)}]dξ′3

.

Taking inverse Laplace transform,

(τ′12)2 =
U1

π
φ2(y2, y3, t) , (A23)

where

φ2(y2, y3, t) =
µ2

1+s
e−a1 t

l1
∫

0

f1(ξ
′
3)[

ξ′23 sin θ1+{(y3−d1)
2−y2

2 }sin θ1+2y2(y3−d1)cos θ1−2ξ′3(y3−d1)

A2
1

+

ξ′23 sin θ1+{(y3+d1)
2−y2

2 }sin θ1−2y2(y3+d1)cos θ1+2ξ′3(y3+d1)

A2
2

]dξ′3

+
µ2

1+s

∞
∑

m=1

(1−s

1+s
)me−a1 t(1+

m
∑

r=1

Brm t r

r!
)×

l1
∫

0

f1(ξ
′
3)[

1

A2
5

{ξ′23 sin θ1+ {(y3− d1− 2mH)2− y2
2}sin θ1+

2y2(y3− d1− 2mH)cos θ1− 2ξ′3(y3− d1− 2mH)}+
1

A2
6

{ξ′23 sin θ1+ {(y3+ d1+ 2mH)2− y2
2}sin θ1−

2y2(y3+ d1+ 2mH)cos θ1+ 2ξ′3(y3+ d1+ 2mH)}]dξ′3



































































.

(A24)

Similarly,

(τ′13)2 =
U1

π
φ3(y2, y3, t) , (A25)
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where

φ3(y2, y3, t) =
µ2

1+s
e−a1 t

l1
∫

0

f1(ξ
′
3)[
−ξ′23 cos θ1+{(y3−d1)

2−y2
2 }cos θ1−2y2(y3−d1)sin θ1+2ξ′3 y2

A2
1

+

ξ′23 cos θ1−{(y3+d1)
2−y2

2 }cos θ1−2y2(y3+d1)sin θ1−2ξ′3 y2

A2
2

]dξ′3

+
µ2

1+s

∞
∑

m=1

(1−s

1+s
)me−a1 t(1+

m
∑

r=1

Brm t r

r!
)×

l1
∫

0

f1(ξ
′
3)[

1

A2
5

{−ξ′23 cos θ1+ {(y3− d1)
2− y2

2}cos θ1−

2y2(y3− d1)sin θ1+ 2ξ′3 y2+

4mH{y2sin θ1− (y3− d1)cos θ1}+ 4m2H2cos θ1}+
1

A2
6

{ξ′23 cos θ1+ {(y3+ d1)
2− y2

2}cos θ1−

2y2(y3+ d1)sin θ1− 2ξ′3 y2−
4mH{y2sin θ1+ (y3+ d1)cos θ1} − 4m2H2cos θ1}]dξ

′
3



















































































.

(A26)

Due to movement of fault part F2 the displacement and stress components are (u1)3,

(u′1)3, (τ12)3, (τ13)3, (τ12′)3, (τ13′)3. Applying similar method taking Green’s function

G1(P,Q) =−
1

π(µ1+µ̄2)
[log
p

(x2− y2)
2+ (x3− y3)

2 +

log
p

(x2− y2)
2+ (x3+ y3)

2 +

∞
∑

m=1

(
µ1−µ̄2

µ1+µ̄2
)m{log
p

(x2− y2)
2+ (x3+ 2mH − y3)

2 +

log
p

(x2− y2)
2+ (x3+ 2mH + y3)

2}]

For layered medium (y3 ≤ H)



























































(A27)

and

G′1(P,Q1) = −
1

2π
[ 1

µ̄2
log
p

(x2− y2)
2+ (x3− y3)

2 +

1

µ̄2

µ̄2−µ1

µ̄2+µ1
log
p

(x2− y2)
2+ (x3− 2H + y3)

2 +

4µ1

(µ1+µ̄2)
2 log
p

(x2− y2)
2+ (x3+ y3)

2 +

4µ1

(µ1+µ̄2)
2

∞
∑

m=1

(
µ1−µ̄2

µ1+µ̄2
)m log
p

(x2− y2)
2+ (x3+ 2mH + y3)

2 ]

For viscoelastic half space (y3 ≥ H)































































.

(A28)
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We get,

(u1)3(Q) =
U2

π
ψ′1(y2, y3, t)

(τ12)3 =
µ1U2

π
ψ′2(y2, y3, t)

(τ13)3 =
µ1U2

π
ψ′3(y2, y3, t)



















, (A29)

where

ψ′1(y2, y3, t) = s

1+s
e−a1 t

l2
∫

0

f2(ξ
′′
3 )[

(y2−l1cos θ1) sin θ2−(y3−H) cos θ2

B1
+

(y2−l1cos θ1) sin θ2+(y3+H) cos θ2

B2
]dξ′′3+

s

1+s
e−a1 t

∞
∑

m=1

(1−s

1+s
)me−a1 t(1+

m
∑

r=1

Brm t r

r!
)×

l2
∫

0

f2(ξ
′′
3 )[

(y2−l1cos θ1) sin θ2−(y3−H) cos θ2+2mHcos θ2

B5
+

(y2−l1cos θ1) sin θ2+(y3+H) cos θ2+2mHcos θ2

B6
]dξ′′3



















































(A30)

ψ′2(y2, y3, t) = s

1+s
e−a1 t

l2
∫

0

f2(ξ
′′
3 )[

sin θ2

B1
+

sin θ2

B2
+

2{(y2−l1cos θ1) sin θ2−(y3−H) cos θ2}(l1cos θ1+ξ
′′
3 cos θ2−y2)

B2
1

+

2{(y2−l1cos θ1) sin θ2−(y3+H) cos θ2}(l1cos θ1+ξ
′′
3 cos θ2−y2)

B2
2

]dξ′′3

+ s

1+s
e−a1 t

∞
∑

m=1

(1−s

1+s
)m(1+

m
∑

r=1

Brm t r

r!
)×

l2
∫

0

f2(ξ
′′
3 )[

sin θ2

B5
+

sin θ6

B6
+

2{(y2−l1cos θ1) sin θ2−(y3−H) cos θ2+2mHcos θ2}(l1cos θ1+ξ
′′
3 cos θ2−y2)

B2
5

+

2{(y2−l1cos θ1) sin θ2+(y3+H) cos θ2+2mHcos θ2}(l1cos θ1+ξ
′′
3 cos θ2−y2)

B2
6

]dξ′′3











































































(A31)
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ψ′3(y2, y3, t) = s

1+s
e−a1 t

l2
∫

0

f2(ξ
′′
3 )[−

cos θ2

B1
+

cos θ2

B2
+

2{(y2−l1cos θ1) sin θ2−(y3−H) cos θ2}(H+ξ
′′
3 sin θ2−y3)

B2
1

−
2{(y2−l1cos θ1) sin θ2+(y3+H) cos θ2}(H+ξ

′′
3 sin θ2+y3)

B2
2

]dξ′′3

+ s

1+s
e−a1 t

∞
∑

m=1

(1−s

1+s
)m(1+

m
∑

r=1

Brm t r

r!
)×

l2
∫

0

f2(ξ
′′
3 )[−

cos θ2

B5
+

cos θ2

B6
+

2{(y2−l1cos θ1) sin θ2−(y3−H) cos θ2−2mHcos θ2}(H+2mH+ξ′′3 sin θ2−y3)

B2
5

−
2{(y2−l1cos θ1) sin θ2+(y3+H) cos θ2+2mHcos θ2}(H+2mH+ξ′′3 sin θ2+y3)

B2
6

]dξ′′3











































































(A32)

and

(u′1)3(Q1) =
U2

2π
φ′1(y2, y3, t)

(τ′12)3 =
U2

2π
φ′2(y2, y3, t)

(τ′13)3 =
U2

2π
φ′3(y2, y3, t)



















, (A33)

where

φ′1(y2, y3, t) =

l2
∫

0

f2(ξ
′′
3 )[

(y2−l1cos θ1)sin θ2−(y3−H)cos θ2

B1
+

( 2s

1+s
e−a1 t − 1)

(y2−l1cos θ1)sin θ2+(y3−H)cos θ2

B7
+

(1− α2

β2 A2(t))
(y2−l1cos θ1)sin θ2+(y3+H)cos θ2

B2
+

{
∞
∑

m=1

(α
β
)mAm(t)−

∞
∑

m=1

(α
β
)m+2Am+2(t)}×

(y2−l1cos θ1)sin θ2+(y3+H)cos θ2+2mHcos θ2

B6
]dξ′′3











































(A34)
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φ′2(y2, y3, t) =

l2
∫

0

f2(ξ
′′
3 )µ2e

−
µ2 t

η [
sin θ2

B1
+

2{(y2−l1cos θ1)sin θ2−(y3−H)cos θ2}(l1cos θ1+ξ
′′
3 cos θ2−y2)

B2
1

]dξ′′3+

µ2(e
−
µ2 t

η − 2

1+s
e−a1 t)

l2
∫

0

f2(ξ
′′
3 )[

sin θ2

B7
+

2{(y2−l1cos θ1)sin θ2+(y3−H)cos θ2}(l1cos θ1+ξ
′′
3 cos θ2−y2)

B2
7

]dξ′′3+

{ 4µ2

1+s
e−a1 t −µ1+µ1(

α

β
)2A2(t)}

l2
∫

0

f2(ξ
′′
3 )[

sin θ2

B2
+

2{(y2−l1cos θ1)sin θ2+(y3+H)cos θ2}(l1cos θ1+ξ
′′
3 cos θ2−y2)

B2
2

]dξ′′3+
∞
∑

m=1

{ 4µ2

1+s
(1−s

1+s
)me−a1 t(1+

m
∑

r=1

Brm t r

r!
)−µ1(

α

β
)mAm(t)+

µ1(
α

β
)m+2Am+2(t)}

l2
∫

0

f2(ξ
′′
3 )[

sin θ2

B6
+

2{(y2−l1cos θ1)sin θ2+(y3+H)cos θ2+2mHcos θ2}(l1cos θ1+ξ
′′
3 cos θ2−y2)

B2
6

]dξ′′3















































































































(A35)

φ′3(y2, y3, t) = µ2e
−
µ2 t

η

l2
∫

0

f2(ξ
′′
3 )[−

cos θ2

B1
+

2{(y2−l1cos θ1)sin θ2−(y3−H)cos θ2}(H+ξ
′′
3 cos θ2−y3)

B2
1

]dξ′′3+

µ2(e
−
µ2 t

η − 2

1+s
e−a1 t)

l2
∫

0

f2(ξ
′′
3 )[

cos θ2

B7
−

2{(y2−l1cos θ1)sin θ2+(y3−H)cos θ2}(H+ξ
′′
3 cos θ2−2H+y3)

B2
7

]dξ′′3+

{ 4µ2

1+s
e−a1 t −µ1+µ1(

α

β
)2A2(t)}

l2
∫

0

f2(ξ
′′
3 )[

cos θ2

B2
−

2{(y2−l1cos θ1)sin θ2+(y3+H)cos θ2}(H+ξ
′′
3 cos θ2+y3)

B2
2

]dξ′′3+
∞
∑

m=1

{ 4µ2

1+s
(1−s

1+s
)me−a1 t(1+

m
∑

r=1

Brm t r

r!
)−µ1(

α

β
)mAm(t)+

µ1(
α

β
)m+2Am+2(t)}

l2
∫

0

f2(ξ
′′
3 )[

cos θ2

B6
−

2{(y2−l1cos θ1)sin θ2+(y3+H)cos θ2+2mHcos θ2}(H+ξ
′′
3 cos θ2+2mH+y3)

B2
6

]dξ′′3















































































































, (A36)
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where

B1 = ξ
′′2
3 − 2ξ′′3{(y2− l1cosθ1)cos θ2+ (y3− H)sin θ2}+
(y3− H)2+ (y2− l1cos θ1)

2

B2 = ξ
′′2
3 − 2ξ′′3{(y2− l1cosθ1)cos θ2− (y3+ H)sin θ2}+
(y3+ H)2+ (y2− l1cos θ1)

2

B5 = ξ
′′2
3 − 2ξ′′3{(y2− l1cosθ1)cos θ2+ (y3− H)sin θ2− 2mHsin θ2}+
(y3− H)2+ (y2− l1cos θ1)

2+ 4m2H2− 4mH(y3− H)

B6 = ξ
′′2
3 − 2ξ′′3{(y2− l1cosθ1)cos θ2− (y3+ H)sin θ2− 2mHsin θ2}+
(y3+ H)2+ (y2− l1cos θ1)

2+ 4m2H2+ 4mH(y3+ H)

B7 = ξ
′′2
3 − 2ξ′′3{(y2− l1cosθ1)cos θ2− (y3− H)sin θ2}+
(y3− H)2+ (y2− l1cos θ1)

2























































. (A37)


