EUROPEAN JOURNAL OF MATHEMATICAL SCIENCES

Vol. 1, No. 1, 2012, 88-99 www.ejmathsci.com



Partial Sums for Certain Subclasses of Meromorphically Univalent Functions

Nanjundan Magesh^{1,*}and Vasu Prameela²

¹ P.G. and Research Department of Mathematics, Government Arts College (Men), Krishnagiri - 635001, Tamilnadu, India.

² Department of Mathematics, Adhiyamaan College of Engineering (Autonomous), Hosur-635109, Tamilnadu, India.

Abstract. In this paper we introduce and study a subclass $\mathcal{M}_p^{\lambda,k}(\alpha,\beta)$ of meromorphically univalent functions defined by generalized Liu-Srivastava operator. We obtain coefficient estimates, extreme points, growth and distortion bounds, radii of meromorphic starlikeness and meromorphic convexity for the class $\mathcal{M}_p^{\lambda,k}(\alpha,\beta)$ by fixing the second coefficient. Further, it is shown that the class $\mathcal{M}_p^{\lambda,k}(\alpha,\beta)$ is closed under convex linear combination.

2010 Mathematics Subject Classifications: 30C45

Key Words and Phrases: Meromorphic functions, Hadamard product(or convolution), meromorphic starlike functions, meromorphic convex functions

1. Introduction

Let $\boldsymbol{\Sigma}$ denote the class of functions of the form

$$f(z) = z^{-1} + \sum_{n=1}^{\infty} a_n z^n$$
 (1)

which are analytic in the punctured open unit disk

$$\mathbb{U}^* := \{ z : z \in \mathbb{C}, 0 < |z| < 1 \} =: \mathbb{U} \setminus \{ 0 \}.$$

Let $\Sigma_{\mathscr{S}}$, $\Sigma^*(\gamma)$ and $\Sigma_K(\gamma)$, $(0 \le \gamma < 1)$ denote the subclasses of Σ that are meromorphic univalent, meromorphically starlike functions of order γ and meromophically convex functions of order γ respectively. Analytically, $f \in \Sigma^*(\gamma)$ if and only if, f is of the form (1) and satisfies

$$-\Re\left(\frac{zf'(z)}{f(z)}\right) > \gamma, \quad z \in \mathbb{U},$$

http://www.ejmathsci.com

(c) 2012 EJMATHSCI All rights reserved.

^{*}Corresponding author.

Email address: nmagi_2000@yahoo.co.in. (N.Magesh)

similarly, $f \in \Sigma_K(\gamma)$, if and only if, f is of the form (1) and satisfies

$$-\Re\left(1+\frac{zf''(z)}{f'(z)}\right) > \gamma, \quad z \in \mathbb{U},$$

and similar other classes of meromorphically univalent functions have been extensively studied by Altintas et al., [2], Aouf et al. [3, 4, 5, 6], Mogra et al. [18], Uralegadi [20] and others.

Let Σ_P be the class of functions of the form

$$f(z) = z^{-1} + \sum_{n=1}^{\infty} a_n z^n, \quad a_n \ge 0,$$
(2)

that are analytic and univalent in \mathbb{U}^* . For functions $f \in \Sigma$ given by (1) and $g \in \Sigma$ given

$$g(z) = z^{-1} + \sum_{n=1}^{\infty} b_n z^n,$$
(3)

we define the Hadamard product (or convolution) of f(z) and g(z) by

$$(f * g)(z) := z^{-1} + \sum_{n=1}^{\infty} a_n b_n z^n =: (g * f)(z).$$
(4)

For complex parameters $\alpha_1, \ldots, \alpha_l$ and β_1, \ldots, β_m ($\beta_j \neq 0, -1, \ldots; j = 1, 2, \ldots, m$) the generalized hypergeometric function ${}_l F_m(z)$ is defined by

$${}_{l}F_{m}(z) \equiv {}_{l}F_{m}(\alpha_{1}, \dots, \alpha_{l}; \beta_{1}, \dots, \beta_{m}; z) := \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n} \dots (\alpha_{l})_{n}}{(\beta_{1})_{n} \dots (\beta_{m})_{n}} \frac{z^{n}}{n!}$$

$$(l \leq m+1; \ l, m \in \mathbb{N}_{0} := \mathbb{N} \cup \{0\}; z \in U)$$

$$(5)$$

where \mathbb{N} denotes the set of all positive integers and $(\theta)_n$ is the Pochhammer symbol defined by

$$(\theta)_n = \frac{\Gamma(\theta+n)}{\Gamma(\theta)} = \begin{cases} 1 & n = 0; \theta \in \mathbb{C} \setminus \{0\} \\ \theta(\theta+1)(\theta+2)\dots(\theta+n-1), & n \in N; \theta \in \mathbb{C} \end{cases}$$
(6)

Corresponding to a function $_{l}F_{m}(\alpha_{1}, \ldots \alpha_{l}; \beta_{1}, \ldots, \beta_{m}; z)$ defined by

$$\mathscr{F}(\alpha_1,\ldots,\alpha_l;\beta_1,\ldots,\beta_m;z):=z^{-1}{}_lF_m(\alpha_1,\ldots,\alpha_l;\beta_1,\ldots,\beta_m;z),$$

Liu and Srivastava [16] (see also [17]) considered a linear operator $\mathcal{H}(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m)$: $\Sigma \to \Sigma$ defined by the following Hadamard product (or convolution):

$$\mathscr{H}(\alpha_{1}, \dots, \alpha_{l}; \beta_{1}, \dots, \beta_{m}) f(z) = \mathscr{F}(\alpha_{1}, \dots, \alpha_{l}; \beta_{1}, \dots, \beta_{m}; z) * f(z)$$

$$= z^{-1} + \sum_{n=1}^{\infty} \left| \frac{(\alpha_{1})_{n+1} \dots (\alpha_{l})_{n+1}}{(\beta_{1})_{n+1} \dots (\beta_{m})_{n+1}} \right| \frac{a_{n} z^{n}}{(n+1)!},$$

$$(7)$$

where, $\alpha_i > 0, (i = 1, 2, ...l), \beta_j > 0, (j = 1, 2, ...m), l \le m + 1; l, m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. For notational simplicity, we use a shorter notations $\mathscr{H}_m^l[\alpha_1]$ for $\mathscr{H}(\alpha_1, ..., \alpha_l; \beta_1, ..., \beta_m)$, in the sequel. We note that the linear operator $\mathscr{H}_m^l[\alpha_1]$ was motivated essentially by Dziok and Srivastava [9].

Next, we define the linear operator $\mathcal{D}_{\lambda,k}^{l,m}: \Sigma \to \Sigma$ by

$$\begin{split} \mathscr{D}_{\lambda,0}^{l,m}f(z) &= f(z), \\ \mathscr{D}_{\lambda,1}^{l,m}f(z) &= (1-\lambda)\mathscr{H}_{m}^{l}[\alpha_{1}]f(z) + \frac{\lambda}{z}(z^{2}\mathscr{H}_{m}^{l}[\alpha_{1}]f(z))' = \mathscr{D}_{\lambda}^{l,m}f(z), (\lambda \geq 0). \end{split}$$

and (in general),

$$\mathcal{D}_{\lambda,k}^{l,m}f(z) = \mathcal{D}_{\lambda}^{l,m}(\mathcal{D}_{\lambda,k-1}^{l,m}f(z))$$

$$\mathcal{D}_{\lambda,k}^{l,m}f(z) := \frac{1}{z} + \sum_{n=1}^{\infty} \Gamma_n(\alpha_1, k, \lambda) a_n z^n,$$
(8)

where,

$$\Gamma_n(\alpha_1, k, \lambda) = \frac{(\alpha_1)_{n+1} \dots (\alpha_l)_{n+1}}{(\beta_1)_{n+1} \dots (\beta_m)_{n+1}} \frac{[1 + \lambda(n-1)]^k}{(n+1)!}, \quad (k \in \mathbb{N}_0, \, \lambda > 0).$$
(9)

We note that, for k = 1 and $\lambda = 0$ the operator $\mathscr{D}_{0,1}^{l,m}f(z) = \mathscr{H}_m^l[\alpha_1]f(z)$ which was investigated by Liu and Srivastava [16], (see also [8]), for l = 2, m = 1, $\alpha_2 = 1$, $\lambda = 0$ and k = 1 the operator $\mathscr{D}_{0,1}^{2,1}[\alpha_1, 1; \beta_1]f(z) = \mathscr{L}[\alpha_1; \beta_1]f(z)$ was introduced and studied by Liu and Srivastava [15] (see also [1], [12] and [22]). Further, we remark in passing that this operator $\mathscr{L}[\alpha_1; \beta_1]$ is closely related to the Carlson-Shaffer operator $\mathscr{L}[\alpha_1; \beta_1]$ defined on the space of analytic and univalent functions in U. For l = 2, m = 1, $\alpha_1 = \delta + 1$, $\beta_1 = \alpha_2 = 1$, $\lambda = 0$ and k = 1, the operator $\mathscr{D}_{0,1}^{2,1}[\delta + 1, 1; 1]f(z) = \mathscr{D}^{\delta}f(z) = \frac{1}{z(1-z)^{\delta+1}} * f(z)(\delta > -1)$, where \mathscr{D}^{δ} is the differential operator which was introduced by Ganigi and Uralegadi [10] (see also [8]) and then it was generalized by Yang [21].

Now by making use of the operator $\mathscr{D}_{\lambda,k}^{l,m}$, we define a new subclass of functions in Σ_P as follows.

Definition 1. For $\alpha > 1$ and $0 < \beta \leq 1$, let $\mathcal{M}^{\lambda,k}(\alpha,\beta)$ denote a subclass of Σ consisting functions of the form (1) satisfying the condition that

$$\Re\left\{z\mathscr{D}^{l,m}_{\lambda,k}f(z) - \alpha z^2(\mathscr{D}^{l,m}_{\lambda,k}f(z))'\right\} > \beta, \quad z \in \mathbb{U}^*,$$
(10)

where $\mathcal{D}_{\lambda,k}^{l,m}f(z)$ is given by (8). Furthermore, we say that a function $f \in \mathcal{M}_p^{\lambda,k}(\alpha,\beta,\gamma)$, whenever f(z) is of the form (2).

In this paper, we assume that $\alpha > 1$, $0 < \beta \le 1$ and $\Gamma_n(\alpha_1, k, \lambda)$ is given by (9) one or otherwise stated in sequel. We observe that, by specializing the parameters $l, m, \alpha_1, \ldots, \alpha_l$, $\beta_1, \ldots, \beta_m, k, \gamma, \lambda$ and k the class leads to various subclasses. As for illustrations, we present some examples for the cases.

Example 1. If l = 2 and m = 1 with $\alpha_1 = 1$, $\alpha_2 = 1$, $\beta_1 = 1$ and f(z) of the form (2), then we obtain the new subclass $\mathcal{M}_{P}(\alpha, \beta, \gamma)$ defined by

$$\Re\left\{zf(z)-\alpha z^2f'(z)\right\}>\beta.$$

The class were introduced and studied by Aouf [3], Kulkarni and Joshi [13].

Example 2. For l = 2, m = 1, $\alpha_1 = \delta + 1$ $\beta_1 = \alpha_2 = 1$ and f(z) of the form (2), then we get the new subclass $\mathscr{D}_p^{\delta}(\alpha, \beta, \gamma)$ defined by

$$\Re\left\{z\mathscr{D}^{\delta}f(z)-\alpha z^{2}(\mathscr{D}^{\delta}f(z))'\right\}>\beta.$$

where $\mathscr{D}^{\delta}f(z) = \frac{1}{z(1-z)^{\delta+1}} * f(z)(\delta > -1)$, is the differential operator which was introduced by Ganigi and Uralegadi [10].

Example 3. For l = 2, m = 1, $\alpha_2 = 1$ and f(z) of the form (2), then we obtain the new subclass $\mathcal{L}_P(\alpha, \beta, \gamma)$ defined by

$$\Re\left\{z\mathscr{L}[\alpha_1,\beta_1]f(z)-\alpha z^2(\mathscr{L}[\alpha_1,\beta_1]f(z))'\right\}>\beta.$$

where the operator $\mathscr{L}[\alpha_1; \beta_1]$ was introduced and studied by Liu and Srivastava [15] (see also [11] and [22]).

Example 4. For $\lambda = 0$, k = 1 and f(z) of the form (2), then we obtain the new subclass $\mathcal{H}_{P}(\alpha, \beta, \gamma)$ defined by

$$\Re\left\{z\mathscr{H}[\alpha_1]f(z) - \alpha z^2(\mathscr{H}[\alpha_1]f(z))'\right\} > \beta.$$

where the operator $\mathcal{H}[\alpha_1]$ was introduced and studied by Liu and Srivastava [16] for multivalent functions.

2. Coefficients Inequalities

Our first theorem gives a necessary and sufficient condition for a function f to be in the class $\Sigma_p(\alpha, \beta, \gamma, \lambda, k)$.

Theorem 1. Let $f \in \Sigma_p$ be given by (2). Then $f \in \Sigma_p(\alpha, \beta, \gamma, \lambda, k)$ if and only if

$$\sum_{n=1}^{\infty} (n\alpha - 1)\Gamma_n(\alpha_1, k, \lambda)a_n \le 1 + \alpha - \beta.$$
(11)

Proof. Suppose that $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Then

$$\Re\left\{z(\frac{1}{z}+\sum_{n=1}^{\infty}\Gamma_n(\alpha_1,k,\lambda)a_nz^n)-\alpha z^2(\frac{-1}{z^2}+\sum_{n=1}^{\infty}n\Gamma_n(\alpha_1,k,\lambda)a_nz^{n-1})\right\}$$

$$= \Re\left\{1+\alpha-\sum_{n=1}^{\infty}(n\alpha-1)\Gamma_n(\alpha_1,k,\lambda)a_nz^{n+1})\right\} > \beta.$$

If we choose *z* to be real, let $z \rightarrow 1-$, we get

$$1 + \alpha - \sum_{n=1}^{\infty} (n\alpha - 1)\Gamma_n(\alpha_1, k, \lambda)a_n \le \beta$$

which is equivalent to (11). Conversely, let us suppose that the inequality (11) holds true. Then we have

$$\begin{aligned} \left| z \mathscr{D}_{\lambda,k}^{l,m} f(z) - \alpha z^2 (\mathscr{D}_{\lambda,k}^{l,m} f(z))' \right| &= \left| -\sum_{n=1}^{\infty} (n\alpha - 1) \Gamma_n(\alpha_1, k, \lambda) a_n z^{n+1} \right| \\ &\leq \sum_{n=1}^{\infty} (n\alpha - 1) \Gamma_n(\alpha_1, k, \lambda) |a_n| |z|^{n+1} \\ &\leq 1 + \alpha - \beta \end{aligned}$$

which implies that $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Finally, we note that the assertion (11) of Theorem 1 is sharp, the extremal function being

$$f(z) = \frac{1}{z} + \frac{1 + \alpha - \beta}{(\alpha - 1)\Gamma_1(\alpha_1, k, \lambda)}z$$

The coefficient estimate for functions in the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ is sated in the following corollary.

Corollary 1. If $f \in \Sigma_p(\alpha, \beta, \gamma, \lambda, k)$, then

$$a_n \le \frac{1 + \alpha - \beta}{(n\alpha - 1)\Gamma_n(\alpha_1, k, \lambda)}, \ n \ge 1.$$
(12)

The result is sharp for the function

$$f_n(z) = \frac{1}{z} + \frac{1 + \alpha - \beta}{(n\alpha - 1)\Gamma_n(\alpha_1, k, \lambda)}, \ n \ge 1.$$
(13)

Next we obtain the growth theorem for the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$.

Theorem 2. If $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$, then

$$\frac{1}{r} - \frac{1+\alpha-\beta}{(\alpha-1)\Gamma_1(\alpha_1,k,\lambda)} r \le |f(z)| \le \frac{1}{r} + \frac{1+\alpha-\beta}{(\alpha-1)\Gamma_1(\alpha_1,k,\lambda)} r \quad (|z|=r)$$

and

$$\frac{1}{r^2} - \frac{1+\alpha-\beta}{(\alpha-1)\Gamma_1(\alpha_1,k,\lambda)} \le |f'(z)| \le \frac{1}{r^2} + \frac{1+\alpha-\beta}{(\alpha-1)\Gamma_1(\alpha_1,k,\lambda)} \quad (|z|=r).$$

The result is sharp for

$$f(z) = \frac{1}{z} + \frac{1 + \alpha - \beta}{(\alpha - 1)\Gamma_1(\alpha_1, k, \lambda)} z.$$
(14)

Proof. Since $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$, we have

$$|f(z)| \le \frac{1}{r} + \sum_{n=1}^{\infty} a_n r^n \le \frac{1}{r} + r \sum_{n=1}^{\infty} a_n.$$
(15)

Given that $f \in \Sigma_p(\alpha, \beta, \gamma, \lambda, k)$, from the equation (11), we have

$$(\alpha - 1)\Gamma_1(\alpha_1, k, \lambda) \sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} (n\alpha - 1)\Gamma_n(\alpha_1, k, \lambda) a_n$$

$$\leq 1 + \alpha - \beta.$$

That is,

$$\sum_{n=1}^{\infty} a_n \le \frac{1+\alpha-\beta}{(\alpha-1)\Gamma_1(\alpha_1,k,\lambda)}$$

Using the above equation in (15), we have

$$|f(z)| \leq \frac{1}{r} + \frac{1+\alpha-\beta}{(\alpha-1)\Gamma_1(\alpha_1,k,\lambda)}r$$

and

$$|f(z)| \ge \frac{1}{r} - \frac{1+\alpha-\beta}{(\alpha-1)\Gamma_1(\alpha_1,k,\lambda)}r.$$

The result is sharp for $f(z) = \frac{1}{z} + \frac{1+\alpha-\beta}{(\alpha-1)\Gamma_1(\alpha_1,k,\lambda)}z$. Similarly we have,

$$|f'(z)| \ge \frac{1}{r^2} - \frac{1+\alpha-\beta}{(\alpha-1)\Gamma_1(\alpha_1,k,\lambda)}$$

and

$$|f'(z)| \leq \frac{1}{r^2} + \frac{1+\alpha-\beta}{(\alpha-1)\Gamma_1(\alpha_1,k,\lambda)}.$$

Let the functions $f_j(z)$ (j = 1, 2, ..., m) be given by

$$f_j(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_{n,j} z^n, \quad a_{n,j} \ge 0, \ n \in \mathbb{N}, n \ge 1.$$
(16)

We state the following closure theorem for the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ without proof.

Theorem 3. Let the function $f_j(z)$ defined by (16) be in the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ for every j = 1, 2, ..., m. Then the function f(z) defined by

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n,$$

belongs to the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$, where $a_n = \frac{1}{m} \sum_{j=1}^m a_{n,j}$, (n = 1, 2, ...).

Our next result gives the extreme points for functions in the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$.

Theorem 4. (Extreme Points) Let

$$f_0(z) = \frac{1}{z} \text{ and } f_n(z) = \frac{1}{z} + \frac{1 + \alpha - \beta}{(n\alpha - 1)\Gamma_n(\alpha_1, k, \lambda)} z^n, \quad (n \ge 1).$$
(17)

Then $f \in \Sigma_p(\alpha, \beta, \gamma, \lambda, k)$, if and only if it can be represented in the form

$$f(z) = \sum_{n=0}^{\infty} \mu_n f_n(z), \quad (\mu_n \ge 0, \sum_{n=0}^{\infty} \mu_n = 1).$$
(18)

Proof. Suppose f(z) can be expressed as in (18). Then

$$f(z) = \sum_{n=0}^{\infty} \mu_n f_n(z)$$

= $\mu_0 f_0(z) + \sum_{n=1}^{\infty} \mu_n f_n(z)$
= $\frac{1}{z} + \sum_{n=1}^{\infty} \mu_n \frac{1 + \alpha - \beta}{(n\alpha - 1)\Gamma_n(\alpha_1, k, \lambda)} z^n$.

Therefore,

$$\sum_{n=1}^{\infty} \mu_n \frac{1+\alpha-\beta}{(n\alpha-1)\Gamma_n(\alpha_1,k,\lambda)} \frac{(n\alpha-1)\Gamma_n(\alpha_1,k,\lambda)}{1+\alpha-\beta} z^n$$
$$= \sum_{n=1}^{\infty} \mu_n - 1 = 1 - \mu_0 \le 1.$$

So by Theorem 1, $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Conversely, we suppose $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Since

$$a_n \leq \frac{1+\alpha-\beta}{(n\alpha-1)\Gamma_n(\alpha_1,k,\lambda)}, \quad n \geq 1.$$

We set,

$$\mu_n = \frac{(n\alpha - 1)\Gamma_n(\alpha_1, k, \lambda)}{1 + \alpha - \beta} a_n, \quad n \ge 1$$

and $\mu_0 = 1 - \sum_{n=1}^{\infty} \mu_n$. Then we have,

$$f(z) = \sum_{n=0}^{\infty} \mu_n f_n(z)$$
$$= \mu_0 f_0(z) + \sum_{n=1}^{\infty} \mu_n f_n(z).$$

Hence the results follows.

3. Radii of Meromorphically Starlikeness and Meromorphically Convexity

In this section, we obtain the radii of starlikeness and convexity of order δ for functions in the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$.

Theorem 5. Let $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Then f is meromorphically starlike of order $\delta(0 \le \delta < 1)$ in the disc $|z| < r_1$, where

$$r_{1} = \inf_{n} \left[\left(\frac{1-\delta}{n+2-\delta} \right) \frac{(n\alpha-1)\Gamma_{n}(\alpha_{1},k,\lambda)}{1+\alpha-\beta} \right]^{\frac{1}{n+1}} \quad (n \ge 1),$$

The result is sharp for the extremal function f(z) given by (17).

Proof. The function $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ of the form (1) is meromorphically starlike of order δ in the disc $|z| < r_1$, if and only if it satisfies the condition

$$\left|\frac{zf'(z)}{f(z)} + 1\right| < 1 - \delta.$$
(19)

Since

$$\left|\frac{zf'(z)}{f(z)} + 1\right| \le \left|\frac{\sum_{n=1}^{\infty} (n+1)a_n z^{n+1}}{1 + \sum_{n=1}^{\infty} a_n z^{n+1}}\right| \le \frac{\sum_{n=1}^{\infty} (n+1)|a_n||z|^{n+1}}{1 - \sum_{n=1}^{\infty} |a_n||z|^{n+1}}.$$

The above expression is less than $1 - \delta$ if

$$\sum_{n=2}^{\infty} \frac{n+2-\delta}{1-\delta} |a_n| \, |z|^{n-1} < 1.$$

Using the fact, that $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ if and only if

$$\sum_{n=2}^{\infty} \frac{(n\alpha-1)\Gamma_n(\alpha_1,k,\lambda)}{1+\alpha-\beta} a_n < 1.$$

We say (19) is true if

$$\frac{n+2-\delta}{1-\delta}|z|^{n+1} < \frac{(n\alpha-1)\Gamma_n(\alpha_1,k,\lambda)}{1+\alpha-\beta}.$$

Or, equivalently,

$$|z|^{n+1} < \frac{(1-\delta)}{(n+2-\delta)} \frac{(n\alpha-1)\Gamma_n(\alpha_1,k,\lambda)}{1+\alpha-\beta}$$

which yields the starlikeness of the family.

Theorem 6. Let $f \in \Sigma_p(\alpha, \beta, \gamma, \lambda, k)$. Then f is meromorphically convex of order δ ($0 \le \delta < 1$) in the unit disc $|z| < r_2$, where

$$r_{2} = \inf_{n} \left[\left(\frac{1-\delta}{n+2-\delta} \right) \frac{(\alpha-1)\Gamma_{n}(\alpha_{1},k,\lambda)}{1+\alpha-\beta} \right]^{\frac{1}{n+1}} \quad (n \ge 1),$$

The result is sharp for the extremal function f(z) given by (14).

Proof. The proof is analogous to that of Theorem 5, and we omit the details.

4. Partial Sums

Let $f \in \Sigma$ be a function of the form (1). Motivated by Silverman [19], Cho and Owa [7], Latha and Shivarudrappa [14], we define the partial sums f_m defined by

$$f_m(z) = \frac{1}{z} + \sum_{n=1}^m a_n z^n \quad (m \in \mathbb{N}).$$
 (20)

In this section, we consider partial sums of functions from the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ and obtain sharp lower bounds for the real part of the ratios of f to f_m and f' to f'_m .

Theorem 7. Let $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ be given by (1) and define the partial sums $f_1(z)$ and $f_m(z)$, by

$$f_1(z) = \frac{1}{z} \text{ and } f_m(z) = \frac{1}{z} + \sum_{n=1}^m |a_n| z^n, \ (m \in \mathbb{N}/\{1\}).$$
(21)

Suppose also that

$$\sum_{n=1}^{\infty} d_n |a_n| \le 1,$$

where

$$d_n \ge \begin{cases} 1 & \text{for } n = 1, 2, 3, \dots, m\\ \frac{(n\alpha - 1)\Gamma_n(\alpha_1, k, \lambda)}{1 + \alpha - \beta} & \text{for } n = m + 1, m + 2, m + 3 \cdots \end{cases}$$
(22)

Then $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Furthermore,

$$Re\left(\frac{f(z)}{f_m(z)}\right) > 1 - \frac{1}{d_{m+1}}$$
(23)

and

$$Re\left(\frac{f_m(z)}{f(z)}\right) > \frac{d_{m+1}}{1+d_{m+1}}.$$
(24)

Proof. For the coefficients d_n given by (22) it is not difficult to verify that

$$d_{n+1} > d_n > 1. (25)$$

Therefore we have

$$\sum_{n=1}^{m} |a_n| + d_{m+1} \sum_{n=m+1}^{\infty} |a_n| \le \sum_{n=1}^{\infty} d_n |a_n| \le 1$$
(26)

by using the hypothesis (22). By setting

$$\Phi_1(z) = d_{m+1} \left(\frac{f(z)}{f_m(z)} - \left(1 - \frac{1}{d_{m+1}} \right) \right)$$

$$= 1 + \frac{d_{m+1} \sum_{n=m+1}^{\infty} a_n z^{n-1}}{1 + \sum_{n=1}^{m} a_n z^{n-1}}$$

then it suffices to show that

$$\Re (\Phi_1(z)) \ge 0 \quad (z \in \mathbb{U}^*)$$

or,

$$\left| \frac{\Phi_1(z) - 1}{\Phi_1(z) + 1} \right| \le 1 \quad (z \in \mathbb{U}^*)$$

and applying (26), we find that

$$\begin{aligned} \left| \frac{\Phi_1(z) - 1}{\Phi_1(z) + 1} \right| &\leq & \frac{d_{m+1} \sum_{n=m+1}^{\infty} |a_n|}{2 - 2 \sum_{n=1}^m |a_n| - d_{m+1} \sum_{n=m+1}^\infty |a_n|} \\ &\leq & 1, \quad z \in \mathbb{U}^*, \end{aligned}$$

which readily yields the assertion (23) of Theorem 7. In order to see that

$$f(z) = \frac{1}{z} + \frac{z^{m+1}}{d_{m+1}}$$
(27)

gives sharp result, we observe that for $z = re^{i\pi/m}$ that $\frac{f(z)}{f_m(z)} = 1 - \frac{r^{m+2}}{d_{m+1}} \rightarrow 1 - \frac{1}{d_{m+1}}$ as $r \rightarrow 1^-$. Similarly, if we take

$$\Phi_2(z) = (1+d_{m+1})\left(\frac{f_m(z)}{f(z)} - \frac{d_{m+1}}{1+d_{m+1}}\right)$$

and making use of (26), we deduce that

$$\left|\frac{\Phi_{2}(z)-1}{\Phi_{2}(z)+1}\right| \leq \frac{(1+d_{m+1})\sum_{n=m+1}^{\infty}|a_{n}|}{2-2\sum_{n=1}^{m}|a_{n}|-(1-d_{m+1})\sum_{n=m+1}^{\infty}|a_{n}|}$$

which leads us immediately to the assertion (24) of Theorem 7. The bound in (24) is sharp for each $m \in \mathbb{N}$ with the extremal function f(z) given by (27).

Theorem 8. If f(z) of the form (1) satisfies the condition (11). Then

$$\Re\left(\frac{f'(z)}{f'_m(z)}\right) \ge 1 - \frac{m+1}{d_{m+1}}$$

REFERENCES

and

$$\Re\left(\frac{f'_m(z)}{f'(z)}\right) \ge \frac{d_{m+1}}{m+1+d_{m+1}}$$

where

$$d_n \ge \begin{cases} n & \text{for } n = 2, 3, \dots, m \\ \frac{(\alpha - 1)\Gamma_n(\alpha_1, k, \lambda)}{1 + \alpha - \beta} & \text{for } n = m + 1, m + 2, m + 3 \cdots \end{cases}$$

The bounds are sharp, with the extremal function f(z) of the form (14). Proof. The proof is analogous to that of Theorem 7, and we omit the details.

ACKNOWLEDGEMENTS: The authors thank the referee for his/her useful suggestions and comments regarding the content of this note.

References

- [1] R. Aghalary, Some properties of a certain family of meromorphically univalent functions defined by an integral operator, Kyungpook Math. J. **48**, no. 3, 379–385. 2008.
- [2] O. Altıntaş, H. Irmak and H. M. Srivastava, A family of meromorphically univalent functions with positive coefficients, Panamer. Math. J. 5, no. 1, 75–81. 1995.
- [3] M. K. Aouf, A certain subclass of meromorphically starlike functions with positive coefficients, Rend. Mat. Appl. (7) **9**, no. 2, 225–235. 1989.
- [4] M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat. Appl. (7) 11, no. 2, 209–219. 1991.
- [5] M. K. Aouf and H. E. Darwish, Certain meromorphically starlike functions with positive and fixed second coefficients, Turkish J. Math. **21**, no. 3, 311–316. 1997.
- [6] M. K. Aouf and S. B. Joshi, On certain subclasses of meromorphically starlike functions with positive coefficients, Soochow J. Math. **24**, no. 2, 79–90. 1998.
- [7] N. E. Cho and S. Owa, Partial sums of certain meromorphic functions, JIPAM. J. Inequal. Pure Appl. Math. 5, no. 2, Article 30, pp. 7. 2004.
- [8] N. E. Cho and I. H. Kim, Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 187, no. 1, 115–121. 2007.
- [9] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. **103**, no. 1, 1–13. 1999
- [10] M. R. Ganigi and B. A. Uralegaddi, New criteria for meromorphic univalent functions, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 33(81), no. 1, 9–13. 1989.

- [11] F. Ghanim and M. Darus, On class of hypergeometric meromorphic functions with fixed second positive coefficients, Gen. Math. **17**, no. 4, 13–28. 2009.
- [12] S. Hussain, A new class of meromorphic functions, Acta Universitatis Apulensis, 24, 181–187. 2010.
- [13] S. R. Kulkarni and S. S. S. Joshi, On a subclass of meromorphic univalent functions with positive coefficients, J. Indian Acad. Math. 24, no. 1, 197–205. 2002.
- [14] S. Latha and L. Shivarudrappa, Partial sums of some meromorphic functions, JIPAM. J. Inequal. Pure Appl. Math. 7, no. 4, Article 140, pp. 8. 2006.
- [15] J.-L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259, no. 2, 566–581. 2001.
- [16] J.-L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling 39, no. 1, 21–34. 2004.
- [17] J.-L. Liu and H. M. Srivastava, Subclasses of meromorphically multivalent functions associated with a certain linear operator, Math. Comput. Modelling **39**, no. 1, 35–44. 2004.
- [18] M. L. Mogra, T. R. Reddy and O. P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc. **32**, no. 2, 161–176. 1985.
- [19] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209, no. 1, 221–227. 1997.
- [20] B. A. Uralegaddi, Meromorphically starlike functions with positive and fixed second coefficients, Kyungpook Math. J. **29**, no. 1, 64–68. 1989.
- [21] D. Yang, On a class of meromorphic starlike multivalent functions, Bull. Inst. Math. Acad. Sinica **24**, no. 2, 151–157. 1996.
- [22] D. Yang, Certain convolution operators for meromorphic functions, Southeast Asian Bull. Math. 25, no. 1, 175–186. 2001.