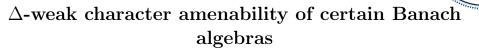
EUROPEAN JOURNAL OF MATHEMATICAL SCIENCES Vol. 3, No. 1, 2017, 32-42 ISSN 2147-5512 – www.ejmathsci.org Published by New York Business Global



Hamid Sadeghi

Department of Mathematics, Fereydan Branch, Islamic Azad University, Isfahan, Iran.

Abstract. In this paper we introduce the notion of Δ -weak character amenable Banach algebras and investigate Δ -weak character amenability of certain Banach algebras such as projective tensor product $A \otimes B$, Lau product $A \times_{\theta} B$, where $\theta \in \Delta(B)$, abstract Segal algebras and module extension Banach algebras.

2010 Mathematics Subject Classifications: 46H25, 46M10

Key Words and Phrases: Banach algebra, Δ -weak approximate identity, Δ -weak character amenability.

1. Introduction

Let A be a Banach algebra and let $\varphi \in \Delta(A)$, consisting of all nonzero characters on A. The concept of φ -amenability was first introduced by Kaniuth *et al.* in [6]. Specifically, A is called φ -amenable if there exist a $m \in A^{**}$ such that

- (i) $m(\varphi) = 1;$
- (ii) $m(f.a) = \varphi(a)m(f) \ (a \in A, f \in A^*).$

Monfared in [10], introduced and studied the notion of character amenable Banach algebra. A was called character amenable if it has a bounded right approximate identity and it is φ -amenable for all $\varphi \in \Delta(A)$. Many aspects of φ -amenability have been investigated in [4, 6, 9].

Let A be a Banach algebra and $\varphi \in \Delta(A) \cup \{0\}$. Following [7], A is called Δ -weak φ -amenable if, there exists a $m \in A^{**}$ such that

- (i) $m(\varphi) = 0;$
- (ii) $m(\psi.a) = \psi(a) \ (a \in \ker(\varphi), \psi \in \Delta(A)).$

In this paper we use above definition with a slight difference. In fact we say that A is Δ -weak φ -amenable if, there exists a $m \in A^{**}$ such that

http://www.ejmathsci.org

32

© 2017 EJMATHSCI All rights reserved.

AL OF MATHEN

Email addresses: h.sadeghi@iaufr.ac.ir

- (i) $m(\varphi) = 0;$
- (ii) $m(\psi.a) = \psi(a) \ (a \in A, \psi \in \Delta(A) \setminus \{\varphi\}).$

The aim of the present work is to study Δ -weak character amenability of certain Banach algebras such as projective tensor product $A \otimes B$, Lau product $A \times_{\theta} B$, where $\theta \in \Delta(B)$, abstract Segal algebras and module extension Banach algebras. Indeed, we show that $A \otimes B$ (resp. $A \times_{\theta} B$) is Δ -weak character amenable if and only if both Aand B are Δ -weak character amenable. For abstract Segal algebra B with respect to A, we investigate relation between Δ -weak character amenability of A and B. Finally, for a Banach algebra A and A-bimodule X we show that $A \oplus_1 X$ is Δ -weak character amenable if and only if A is Δ -weak character amenable.

2. Δ -weak character amenability of $A \widehat{\otimes} B$

We commence this section with the following definition:

Definition 1. Let A be a Banach algebra. The net $(a_{\alpha})_{\alpha}$ in A is called a Δ -weak approximate identity if, $|\varphi(aa_{\alpha}) - \varphi(a)| \longrightarrow 0$, for each $a \in A$ and $\varphi \in \Delta(A)$.

Note that the approximate identity and Δ -weak approximate identity of a Banach algebra are different. Jones and Lahr proved that if $S = \mathbb{Q}^+$ the semigroup algebra $l^1(S)$ has a bounded Δ -weak approximate identity, but it does not have any bounded or unbounded approximate identity (see [3]).

Definition 2. Let A be a Banach algebra and $\varphi \in \Delta(A) \cup \{0\}$. We say that A is Δ -weak φ -amenable if, there exists a $m \in A^{**}$ such that

- (i) $m(\varphi) = 0;$
- (ii) $m(\psi.a) = \psi(a) \ (a \in A, \psi \in \Delta(A) \setminus \{\varphi\}).$

Definition 3. Let A be a Banach algebra. We say that A is Δ -weak character amenable if it is Δ -weak φ -amenable for every $\varphi \in \Delta(A) \cup \{0\}$.

Lemma 1. Let A be a Banach algebra such that $0 < |\Delta(A)| \le 2$. Then A is Δ -weak character amenable.

Proof. If A has only one character, the proof is easy. Let $\Delta(A) = \{\varphi, \psi\}$, where $\varphi \neq \psi$. Hence, by Theorem 3.3.14 of [5], there exists a $a_0 \in A$ with $\varphi(a_0) = 0$ and $\psi(a_0) = 1$. Put $m = \hat{a_0}$. Then $m(\varphi) = \hat{a_0}(\varphi) = \varphi(a_0) = 0$ and for every $a \in A$, we have

$$m(\psi.a) = \widehat{a_0}(\psi.a) = \psi.a(a_0) = \psi(aa_0) = \psi(a).$$

So, A is Δ -weak φ -amenable. A Similar argument shows that A is Δ -weak ψ -amenable. Therefore A is Δ -weak character amenable.

The proof of the following theorem is omitted, since it can be proved in the same direction of Theorem 2.2 of [7].

Theorem 1. Let A be a Banach algebra and $\varphi \in \Delta(A) \cup \{0\}$. Then A is Δ -weak φ amenable if and only if there exists a net $(a_{\alpha})_{\alpha} \subseteq \ker(\varphi)$ such that $|\psi(aa_{\alpha}) - \psi(a)| \longrightarrow 0$,
for each $a \in A$ and $\psi \in \Delta(A) \setminus \{\varphi\}$.

Example 1. (i) Let A be a Banach algebra with a bounded approximate identity. By Theorem 1, A is Δ -weak 0-amenable.

(ii) Let $S = \mathbb{Q}^+$. Then the semigroup algebra $l^1(S)$ has a bounded Δ -weak approximate identity (see [3]). So, Theorem 1, implies that $l^1(S)$ is Δ -weak 0-amenable.

Example 2. Let X be a Banach space and let $\varphi \in X^* \setminus \{0\}$ with $\|\varphi\| \leq 1$. Define a product on X by $ab = \varphi(a)b$ for all $a, b \in X$. With this product X is a Banach algebra which we denote it by $A_{\varphi}(X)$. Clearly, $\Delta(A_{\varphi}(X)) = \{\varphi\}$. Therefore by Lemma 1, $A_{\varphi}(X)$ is Δ -weak φ -amenable.

Example 3. Let A be a Banach algebra and $\varphi \in \Delta(A) \cup \{0\}$. Suppose that A is a φ -amenable and has a bounded right approximate identity. By Corollary 2.3 of [6], ker(φ) has a bounded right approximate identity. Let $(e_{\alpha})_{\alpha}$ be a bounded right approximate identity for ker(φ). If there exists $a_0 \in A$ with $\varphi(a_0) = 1$ and $\lim_{\alpha} |\psi(a_0e_{\alpha}) - \psi(a_0)| = 0$ for all $\psi \in \Delta(A) \setminus \{\varphi\}$, then A is Δ -weak φ -amenable. For see this let $m = w^* - \lim_{\alpha} (\widehat{e_{\alpha}})$. Now, we have

$$m(\varphi) = \lim_{\alpha} \widehat{e_{\alpha}}(\varphi) = \lim_{\alpha} \varphi(e_{\alpha}) = 0,$$

and for every $\psi \in \Delta(A) \setminus \{\varphi\}$ and $a \in \ker(\varphi)$,

γ

$$m(\psi.a) = \lim_{\alpha} \widehat{e_{\alpha}}(\psi.a) = \lim_{\alpha} \psi.a(e_{\alpha}) = \lim_{\alpha} \psi(ae_{\alpha}) = \psi(a).$$

Let $a \in A$. Then $a - \varphi(a)a_0 \in \ker(\varphi)$ and for every $\psi \in \Delta(A) \setminus \{\varphi\}$, we have

$$m\big(\psi.(a-\varphi(a)a_0)\big) = \psi\big(a-\varphi(a)a_0\big).$$

Therefore $m(\psi.a) = \psi(a)$. So A is Δ -weak φ -amenable.

For $f \in A^*$ and $g \in B^*$, let $f \otimes g$ denote the element of $(A \otimes B)^*$ satisfying $(f \otimes g)(a \otimes b) = f(a)g(b)$ for all $a \in A$ and $b \in B$. Then, with this notion,

$$\Delta(A\widehat{\otimes}B) = \{\varphi \otimes \psi : \varphi \in \Delta(A), \psi \in \Delta(B)\}.$$

Theorem 2. Let A and B be Banach algebras and let $\varphi \in \Delta(A) \cup \{0\}$ and $\psi \in \Delta(B) \cup \{0\}$. Then $A \widehat{\otimes} B$ is Δ -weak ($\varphi \otimes \psi$)-amenable if and only if A is Δ -weak φ -amenable and B is Δ -weak ψ -amenable.

Proof. Suppose that $A \widehat{\otimes} B$ is Δ -weak $(\varphi \otimes \psi)$ -amenable. So, there exists $m \in (A \widehat{\otimes} B)^{**}$ such that

$$m(arphi\otimes\psi)=0, \;\; m(arphi'\otimes\psi'.a\otimes b)=arphi'\otimes\psi'(a\otimes b),$$

for all $a \otimes b \in A \widehat{\otimes} B$, $\varphi' \otimes \psi' \in \Delta(A \widehat{\otimes} B)$. Choose $b_0 \in B$ such that $\psi(b_0) = 1$, and define $m_{\varphi} \in A^{**}$ by $m_{\varphi}(f) = m(f \otimes \psi)(f \in A^*)$. Then $m_{\varphi}(\varphi) = m(\varphi \otimes \psi) = 0$ and for every $a \in A$ and $\varphi' \in \Delta(A)$, we have

$$m_{\varphi}(\varphi'.a) = m(\varphi'.a \otimes \psi) = m((\varphi'.a \otimes \psi.b_0))$$

$$= m(\varphi' \otimes \psi.a \otimes b_0) = \varphi' \otimes \psi(a \otimes b_0)$$
$$= \varphi'(a).$$

Thus A is Δ -weak φ -amenable. By a similar argument one can prove that B is Δ -weak ψ -amenable.

Conversely, assume that A is Δ -weak φ -amenable and B is Δ -weak ψ -amenable. By Theorem 1, there are bounded nets $(a_{\alpha})_{\alpha}$ and $(b_{\beta})_{\beta}$ in ker (φ) and ker (ψ) , respectively, such that $|\varphi'(aa_{\alpha}) - \varphi'(a)| \longrightarrow 0$ and $|\psi'(bb_{\beta}) - \psi'(b)| \longrightarrow 0$ for all $a \in A, b \in B, \varphi' \in \Delta(A), \psi' \in \Delta(B)$, with $\varphi' \neq \varphi$ and $\psi' \neq \psi$. Consider the bounded net $((a_{\alpha} \otimes b_{\beta}))_{(\alpha,\beta)}$ in $A \widehat{\otimes} B$. Let $||a_{\alpha}|| \leq M_1, ||b_{\beta}|| \leq M_2$ and let $F = \sum_{i=1}^N c_i \otimes d_i \in A \widehat{\otimes} B$. For every $\varphi' \in \Delta(A) \setminus \{0\}$ and $\psi' \in \Delta(B) \setminus \{0\}$, we have

$$\begin{aligned} |\varphi' \otimes \psi'(F.a_{\alpha} \otimes b_{\beta}) - \varphi' \otimes \psi'(F)| \\ &= \left| \sum_{i=1}^{N} \left[\left(\varphi'(c_{i}a_{\alpha}) - \varphi'(c_{i}) \right) \psi'(d_{i}b_{\beta}) + \varphi'(c_{i}) \left(\psi'(d_{i}b_{\beta}) - \psi'(d_{i}) \right) \right] \right| \\ &\leq \sum_{i=1}^{N} M_{2} \|d_{i}\| \|\psi'\| \left| \varphi'(c_{i}a_{\alpha}) - \varphi'(c_{i}) \right| + \sum_{i=1}^{N} \|\varphi'\| \|c_{i}\| \left| \psi'(d_{i}b_{\beta}) - \psi'(d_{i}) \right| \\ &\longrightarrow 0. \end{aligned}$$

Now let $G \in A \widehat{\otimes} B$, so there exist sequences $(c_i)_i \subseteq A$ and $(d_i)_i \subseteq B$ such that $G = \sum_{i=1}^{\infty} c_i \otimes d_i$ with $\sum_{i=1}^{\infty} \|c_i\| \|d_i\| < \infty$. Let $\varepsilon > 0$ be given, we choose $N \in \mathbb{N}$ such that $\sum_{i=N+1}^{\infty} \|c_i\| \|d_i\| < \varepsilon/4M_1M_2 \|\varphi'\| \|\psi'\|$. Put $F = \sum_{i=1}^{N} c_i \otimes d_i$. Since $|\varphi' \otimes \psi'(F.a_\alpha \otimes b_\beta) - \varphi' \otimes \psi'(F)| \longrightarrow 0$, it follows that there exists (α_0, β_0) such that $|\varphi' \otimes \psi'(F.a_\alpha \otimes b_\beta) - \varphi' \otimes \psi'(F)| < \varepsilon/2$ for all $(\alpha, \beta) \ge (\alpha_0, \beta_0)$. Now for such a (α, β) , we have

$$\begin{aligned} \left| \varphi' \otimes \psi'(G.a_{\alpha} \otimes b_{\beta}) - \varphi' \otimes \psi'(G) \right| \\ &= \left| \varphi' \otimes \psi'(F.a_{\alpha} \otimes b_{\beta}) - \varphi' \otimes \psi'(F) \right. \\ &+ \sum_{i=1+N}^{\infty} \left(\varphi'(c_{i}a_{\alpha})\psi'(d_{i}b_{\beta}) - \varphi'(c_{i})\psi'(d_{i}) \right) \right| \\ &\leq \varepsilon/2 + 2M_{1}M_{2} \|\varphi'\| \|\psi'\| \sum_{i+N}^{\infty} \|c_{i}\| \|d_{i}\| \leq \varepsilon/2 + \varepsilon/2 = \varepsilon. \end{aligned}$$

Hence $|\varphi' \otimes \psi'(G.a_{\alpha} \otimes b_{\beta}) - \varphi' \otimes \psi'(G)| \longrightarrow 0$. Also, clearly $|\varphi' \otimes \psi'(G.a_{\alpha} \otimes b_{\beta}) - \varphi' \otimes \psi'(G)| \longrightarrow 0$ for $\varphi' = 0$ and $\psi' = 0$ and it is easy to see that $((a_{\alpha} \otimes b_{\beta}))_{(\alpha,\beta)} \subset \ker(\varphi \otimes \psi)$. Therefore $A \widehat{\otimes} B$ is Δ -weak $(\varphi \otimes \psi)$ -amenable, again by Theorem 1.

Corollary 1. Let A and B be Banach algebras. Then $A \widehat{\otimes} B$ is Δ -weak character amenable if and only if both A and B are Δ -weak character amenable.

3. Δ -weak character amenability of $A \times_{\theta} B$

Let A and B be Banach algebras with $\Delta(B) \neq \emptyset$. Let $\theta \in \Delta(B)$. Then the direct product $A \times B$ equipped with the algebra multiplication

$$(a_1, b_1).(a_2, b_2) = (a_1a_2 + \theta(b_2)a_1 + \theta(b_1)a_2, b_1b_2) \quad (a_1, a_2 \in A, b_1, b_2 \in B),$$

and the l^1 -norm is a Banach algebra which is called the θ -Lau product of A and B and is denoted by $A \times_{\theta} B$. This type of product was introduced by Lau [8] for certain class of Banach algebras and was extended by Monfared [9] for the general case.

We note that the dual space $(A \times_{\theta} B)^*$ can be identified with $A^* \times B^*$, via

$$\langle (f,g), (a,b) \rangle = \langle a, f \rangle + \langle b, g \rangle \ (a \in A, f \in A^*, b \in B, g \in B^*).$$

Moreover, $(A \times_{\theta} B)^*$ is a $(A \times_{\theta} B)$ -bimodule with the module operations given by

$$(f,g).(a,b) = \left(f.a + \theta(b)f, f(a)\theta + g.b\right) , \qquad (1)$$

and

$$(a,b).(f,g) = \left(a.f + \theta(b)f, f(a)\theta + b.g\right) , \qquad (2)$$

for all $a \in A, b \in B$ and $f \in A^*, g \in B^*$.

Proposition 1. Let A be a unital Banach algebra and B be a Banach algebra and $\theta \in \Delta(B)$. Then $A \times_{\theta} B$ has a Δ -weak approximate identity if and only if B has a Δ -weak approximate identity.

Proof. Let $((a_{\alpha}, b_{\alpha}))_{\alpha}$ be a Δ -weak approximate identity for $A \times_{\theta} B$. For every $\psi \in \Delta(B)$ and $b \in B$ we have,

$$\left|\psi(bb_{\alpha})-\psi(b)\right|=\left|(0,\psi)\big((0,b)(a_{\alpha},b_{\alpha})\big)-(0,\psi)(0,b)\right|\longrightarrow 0.$$

Then $(b_{\alpha})_{\alpha}$ is a Δ -weak approximate identity for B.

Conversely, let e_A be the identity of A and $(b_\beta)_\beta$ be a Δ -weak approximate identity for B. We claim that $(e_A - \theta(b_\beta)e_A, b_\beta))_\beta$ is a Δ -weak approximate identity for $A \times_{\theta} B$. In fact for every $a \in A, b \in B$ and $\varphi \in \Delta(A)$, we have

$$\begin{aligned} \left| (\varphi, \theta) \big((a, b) (e_A - \theta(b_\beta) e_A, b_\beta) \big) - (\varphi, \theta) (a, b) \right| \\ &= \left| (\varphi, \theta) \big(a + \theta(b) e_A - \theta(bb_\beta), bb_\beta) \big) - (\varphi, \theta) (a, b) \right| \\ &= 0. \end{aligned}$$

Also for every $a \in A, b \in B$ and $\psi \in \Delta(B)$, we have

$$\left|(0,\psi)\big((a,b)(e_A-\theta(b_\beta)e_A,b_\beta)\big)-(0,\psi)(a,b)\right| = \left|\psi(bb_\beta)-\psi(b)\right| \longrightarrow 0.$$

Therefore $((e_A - \theta(b_\beta)e_A, b_\beta))_\beta$ is a Δ -weak approximate identity for $A \times_{\theta} B$.

Theorem 3. Let A be a unital Banach algebra and B be a Banach algebra and $\theta \in \Delta(B)$. Then $A \times_{\theta} B$ is Δ -weak character amenable if and only if both A and B are Δ -weak character amenable.

Proof. Suppose that $A \times_{\theta} B$ is Δ -weak character amenable. Let $\varphi \in \Delta(A) \cup \{0\}$. Then there exists $m \in (A \times_{\theta} B)^{**}$ such that $m(\varphi, \theta) = 0$ and m(h.(a, b)) = h(a, b) for all $(a, b) \in A \times_{\theta} B$ and $h \in \Delta(A \times_{\theta} B)$, where $h \neq (\varphi, \theta)$. Let e_A be the identity of A and define $m_{\varphi} \in A^{**}$ by $m_{\varphi}(f) = m(f, f(e_A)\theta)(f \in A^*)$. For every $a \in A$ and $\varphi' \in \Delta(A)$, we have

$$m_{\varphi}(\varphi'.a) = m(\varphi'.a, (\varphi'.a)(e_A)\theta)$$
$$= m(\varphi'.a, \varphi'(a)\theta)$$
$$= m((\varphi', \theta).(a, 0))$$
$$= (\varphi', \theta)(a, 0)$$
$$= \varphi'(a).$$

Also $m_{\varphi}(\varphi) = m(\varphi, \theta) = 0$. Thus A is a Δ -weak φ -amenable. Therefore A is Δ -weak character amenable.

Let $\psi \in \Delta(B) \cup \{0\}$. From the Δ -weak character amenability of $A \times_{\theta} B$ it follows that there exists a $m \in (A \times_{\theta} B)^{**}$ such that $m(0, \psi) = 0$ and m(h.(a, b)) = h(a, b)for all $(a, b) \in A \times_{\theta} B$ and $h \in \Delta(A \times_{\theta} B)$, where $h \neq (0, \psi)$. Define $m_{\psi} \in B^{**}$ by $m_{\psi}(g) = m(0, g)$. So $m_{\psi}(\psi) = m(0, \psi) = 0$ and

$$m_{\psi}(\psi'.b) = m(0,\psi'.b) = m\big((0,\psi').(0,b)\big) = (0,\psi')(0,b') = \psi'(b),$$

for all $b \in B$ and $\psi' \in \Delta(B)$. Therefore B is Δ -weak character amenable.

Conversely, let A and B be Δ -weak character amenable. We show that for every $h \in \Delta(A \times_{\theta} B), A \times_{\theta} B$ is Δ -weak h-amenable. To see this we first assume that $h = (0, \psi)$, where $\psi \in \Delta(B)$. Since B is Δ -weak character amenable by Theorem 1 there exists a net $(b_{\beta})_{\beta} \subseteq \ker \psi$ such that $|\psi'(bb_{\beta}) - \psi'(b)| \longrightarrow 0$, for all $b \in B$ and $\psi' \in \Delta(B)$, where $\psi' \neq \psi$. Consider a bounded net $((e_A - \theta(b_{\beta})e_A, b_{\beta}))_{\beta} \subseteq A \times_{\theta} B$. A similar argument as in the proof of Proposition 1, shows that

$$\left| (\varphi, \theta) \big((a, b) (e_A - \theta(b_\beta) e_A, b_\beta) \big) - (\varphi, \theta) (a, b) \right| \longrightarrow 0,$$

and

$$\left| (0,\psi) \big((a,b)(e_A - \theta(b_\beta)e_A, b_\beta) \big) - (0,\psi)(a,b) \right| \longrightarrow 0,$$

for all $\varphi \in \Delta(A), \psi \in \Delta(B)$ and $a \in A, b \in B$. Also one can easily check that $((e_A - \theta(b_\beta)e_A, b_\beta))_\beta \subseteq \ker h$. So, by Theorem 1, $A \times_{\theta} B$ is Δ -weak $(0, \psi)$ -amenable.

Now let $h = (\varphi, \theta)$, where $\varphi \in \Delta(A)$. Since A is Δ -weak φ -amenable by Theorem 1, there exists a net $(a_{\alpha})_{\alpha} \subseteq \ker \varphi$ such that $|\varphi'(aa_{\alpha}) - \varphi'(a)| \longrightarrow 0$, for all $a \in A$ and $\varphi' \in \Delta(A)$, where $\varphi' \neq \varphi$. Also since B is Δ -weak θ -amenable again by Theorem 1, there exists a net $(b_{\beta})_{\beta} \subseteq \ker(\theta)$ such that $|\psi'(bb_{\beta}) - \psi'(b)| \longrightarrow 0$, for all $b \in B$ and $\psi' \in \Delta(B)$,

where $\psi' \neq \theta$. Consider a bounded net $((a_{\alpha}, b_{\beta}))_{(\alpha,\beta)} \subseteq A \times_{\theta} B$. It is easy to see that $((a_{\alpha}, b_{\beta}))_{(\alpha,\beta)} \subseteq \ker(\varphi, \theta)$. For every $a \in A, b \in B$ and $\psi' \in \Delta(B)$, we have

$$\left| (0,\psi') \big((a,b)(a_{\alpha},b_{\beta}) \big) - (0,\psi') \big(a,b \big) \right| = \left| \psi'(bb_{\beta}) - \psi'(b) \right| \longrightarrow 0,$$

and for every $\varphi' \in \Delta(A)$,

$$\begin{aligned} \left| (\varphi', \theta) \big((a, b)(a_{\alpha}, b_{\beta}) \big) - (\varphi', \theta) \big((a, b) \big) \right| \\ &= \left| \varphi'(aa_{\alpha}) + \theta(b) \varphi'(a_{\alpha}) - \varphi'(a) - \theta(b) \right) \right| \\ &\leq \left| \varphi'(aa_{\alpha}) - \varphi'(a) \right| + \left| \theta(b) \right| \left| \varphi'(a_{\alpha}e_{A}) - \varphi'(e_{A}) \right| \longrightarrow 0 \end{aligned}$$

So, Theorem 1, yields that $A \times_{\theta} B$ is Δ -weak (φ, θ) -amenable. Therefore $A \times_{\theta} B$ is Δ -weak character amenable.

4. Δ -weak character amenability of abstract Segal algebras

We start this section with the basic definition of abstract Segal algebra; see [2] for more details. Let $(A, \|.\|_A)$ be a Banach algebra. A Banach algebra $(B, \|.\|_B)$ is an abstract Segal algebra with respect to A if:

- (i) B is a dense left ideal in A;
- (ii) there exists M > 0 such that $||b||_A \le M ||b||_B$ for all $b \in B$;
- (iii) there exists C > 0 such that $||ab||_B \le C ||a||_A ||b||_B$ for all $a, b \in B$.

Several authors have studied various notions of amenability for abstract Segal algebras; see, for example, [1, 11].

To prove our next result we need to quote the following lemma from [1].

Lemma 2. Let A be a Banach algebra and let B be an abstract Segal algebra with respect to A. Then $\Delta(B) = \{\varphi|_B : \varphi \in \Delta(A)\}.$

Theorem 4. Let A be a Banach algebra and let B be an abstract Segal algebra with respect to A. If B is Δ -weak character amenable, then so is A. In the case that B^2 is dense in B and B has a bounded approximate identity the converse is also valid.

Proof. Let $\varphi \in \Delta(A)$. Since *B* is Δ -weak $\varphi|_B$ -amenable, by Theorem 1, there exists a bounded net $(b_{\alpha})_{\alpha}$ in ker $(\varphi|_B)$ such that $|\psi|_B(bb_{\alpha}) - \psi|_B(b)| \longrightarrow 0$, for all $b \in B$ and $\psi \in \Delta(A)$, with $\psi \neq \varphi|_B$. Let $\psi \in \Delta(A)$ and $a \in A$. From the density of *B* in *A* it follows that there exists a net $(b_i)_i \subseteq B$ such that $\lim_i b_i = a$. So

$$\left|\psi(ab_{\alpha}) - \psi(a)\right| = \lim_{i} \left|\psi|_{B}(b_{i}b_{\alpha}) - \psi|_{B}(b_{i})\right| \longrightarrow 0.$$

Then Theorem 1 implies that A is Δ -weak φ -amenable. Therefore A is Δ -weak character amenable.

Conversely, suppose that A is Δ -weak character amenable. Let $\varphi|_B \in \Delta(B)$. By Theorem1, there exists a bounded net $(a_{\alpha})_{\alpha}$ in ker (φ) such that $|\psi(aa_{\alpha}) - \psi(a)| \longrightarrow 0$, for all $a \in A$ and $\psi \in \Delta(A)$, with $\psi \neq \varphi$. Let $(e_i)_i$ be a bounded approximate identity for B with bound M > 0. Set $b_{\alpha} = \lim_i (e_i a_{\alpha} e_i)$, for all α . From the fact that B^2 is dense in B and continuity of φ , we infer that $b_{\alpha} \subseteq \ker(\varphi|_B)$. Moreover, for every $\psi|_B \in \Delta(B)$ and $b \in B$, we have

$$\begin{aligned} \left|\psi|_{B}(bb_{\alpha}) - \psi|_{B}(b)\right| &= \lim_{i} \left|\psi|_{B}(be_{i}a_{\alpha}e_{i}) - \psi|_{B}(b)\right| \\ &= \lim_{i} \left|\psi|_{B}(be_{i}^{2}a_{\alpha}) - \psi|_{B}(b)\right| \\ &= \left|\psi|_{B}(ba_{\alpha}) - \psi|_{B}(b)\right| \longrightarrow 0. \end{aligned}$$

Hence, B is Δ -weak $\varphi|_B$ -amenable by Theorem1. Therefore B is Δ -weak character amenable.

5. Δ -weak character amenability of module extension Banach algebras

Let A be a Banach algebra and X be a Banach A-bimodule. The l^1 -direct sum of A and X, denoted by $A \oplus_1 X$, with the product defined by

$$(a, x)(a', x') = (aa', a.x' + x.a') \qquad (a, a' \in A, x, x' \in X),$$

is a Banach algebra that is called the module extension Banach algebra of A and X.

Using the fact that the element (0, x) is nilpotent in $A \oplus_1 X$ for all $x \in X$, it is easy to verify that

$$\Delta(A \oplus_1 X) = \{ \tilde{\varphi} : \varphi \in \Delta(A) \},\$$

where $\tilde{\varphi}(a, x) = \varphi(a)$ for all $a \in A$ and $x \in X$.

Theorem 5. Let A be a Banach algebra and X be a Banach A-bimodule. Then $A \oplus_1 X$ is Δ -weak character amenable if and only if A is Δ -weak character amenable.

Proof. Suppose that A is Δ -weak character amenable. Let $\tilde{\varphi} \in \Delta(A \oplus_1 X)$. By Theorem 1, there exists a bounded net $(a_\alpha)_\alpha$ in ker (φ) such that $|\psi(aa_\alpha) - \psi(a)| \longrightarrow 0$, for all $a \in A$ and $\psi \in \Delta(A)$, with $\psi \neq \varphi$. Choosing a bounded net $(a_\alpha, 0)_\alpha$ in $A \oplus_1 X$. Clearly, $(a_\alpha, 0)_\alpha \subseteq \ker(\tilde{\varphi})$. For every $a \in A, x \in X$ and $\tilde{\psi} \in \Delta(A \oplus_1 X)$, we have

$$\begin{aligned} \left| \hat{\psi} \big((a, x)(a_{\alpha}, 0) \big) - \hat{\psi}(a, x) \right| &= \left| \hat{\psi} \big(aa_{\alpha}, x.a_{\alpha} \big) - \hat{\psi}(a, x) \right| \\ &= \left| \psi(aa_{\alpha}) - \psi(a) \right| \longrightarrow 0. \end{aligned}$$

So, Theorem 1 implies that $A \oplus_1 X$ is Δ -weak $\tilde{\varphi}$ -amenable. Therefore $A \oplus_1 X$ is Δ -weak character amenable.

REFERENCES

For the converse, let $\varphi \in \Delta(A)$. Again by Theorem 1 there exists a bounded net $(a_{\alpha}, x_{\alpha})_{\alpha}$ in ker $(\tilde{\varphi})$ such that $|\tilde{\psi}((a, x)(a_{\alpha}, x_{\alpha})) - \tilde{\psi}(a, x)| \longrightarrow 0$, for all $a \in A, x \in X$ and $\tilde{\psi} \in \Delta(A \oplus_1 X)$, with $\tilde{\psi} \neq \tilde{\varphi}$. So,

$$\begin{aligned} \left|\psi(aa_{\alpha}) - \varphi(a)\right| &= \left|\tilde{\psi}(aa_{\alpha}, a.x_{\alpha} + x.a_{\alpha}) - \tilde{\psi}(a, x)\right| \\ &= \left|\tilde{\psi}((a, x)(a_{\alpha}, x_{\alpha})) - \tilde{\psi}(a, x)\right| \longrightarrow 0 \end{aligned}$$

for all $a \in A$ and $\psi \in \Delta(A)$. Moreover, $\varphi(a_{\alpha}) = \tilde{\varphi}(a_{\alpha}, x_{\alpha}) = 0$, for all α . Thus $(a_{\alpha})_{\alpha} \subseteq \ker(\varphi)$. By Theorem 1, A is Δ -weak φ -amenable. Therefore A is Δ -weak character amenable.

References

- E. Armendariz. A note on extensions of baer and p.p.-ring. J. Aust. Math. Soc., 18:470–473, 1974.
- [2] J. Beachy and W. Blair. Rings whose faithful left ideals are cofaithful. *Pacific J. Math.*, 58(1):1–13, 1975.
- [3] F. Cedó. Zip rings and mal'cev domains. Communications in Algebra, 19(17):1983– 1991, 1991.
- [4] W. Cortes. Skew polynomial extensions over zip rings. Int. J. Math. Sci., 10:1–8, 2008.
- [5] C. Faith. Rings with zero intersection property on annihilators: zip rings. *Publications Mathemàtiques*, 33:329–338, 1989.
- [6] C. Faith. annihilator ideals, associated primes and kash-mccoy commutative rings. *Communication in Algebra*, 19:1867–1892, 1991.
- [7] I. N. Herstein. Noncommutative rings. 1968.
- [8] C. Hong, N. Kim, T. Kwak, and Y. Lee. Extensions of zip rings. J. Pure and Appl. Algebra, 195:231–242, 2005.
- [9] E. Jorge. Rings with the Beachy-Blair condition. 2010.
- [10] T. Lam. A First Course in Noncommutative Rings, Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1991.
- [11] Z. K. Liu and R. Zhao. On weak armendariz rings. Comm. Algebra, 34:2607–2616, 2006.
- [12] G. Marks, R. Mazurek, and M. Ziembowski. A unified approach to various generalizations of armendariz rings. Bull. Aust. Math. Soc., 81:361–397, 2010.

- [13] R. Mazurek and M Ziembowski. On von numann regular rings of skew generalized power series. *Comm. Algebra*, 36(5):1855–1868, 2008.
- [14] L. Ouyang. Extensions of nilpotent p.p.-rings. Bulletin of the Iranian Mathematical Society, 36(2):169–184, 2010.
- [15] L. Ouyang and G. Birkenmeier. Weak annihilator over extension rings. Bull. Malays. Math. Sci. Soc., 35(2):345–357, 2012.
- [16] L. Ouyang and L. Jinwang. Nilpotent property of skew generalized power series rings. Advances in Math., 42(6):782–794, 2013.
- [17] L. Ouyang and L. Jinwang. Weak annihilator property of malcev-neumann rings. Bull. Malays. Math. Sci. Soc., 36(2):351–362, 2013.
- [18] M. Rege and S. Chhawchharia. Weak annihilator over extension rings, armendariz rings. Proc. Japan Acad. Ser. A Math. Sci., 73:14–17, 1997.
- [19] P. Ribenboim. Rings of genralized power series: Nilpotent elements. Abh. Math. Sem. Univ. Hamburg, 61:15–33, 1991.
- [20] P. Ribenboim. Noetherian rings of generalized power series. J. Pure. Appl Algebra, 79(3):293–312, 1992.
- [21] P. Ribenboim. Semisimple rings and von neumann regular rings of generalized power series. J. Algebra, 198:327–338, 1997.
- [22] R. Salem. On zip and weak zip rings of skew generalized power series. J. Egypt. Math. Soc., 20:157–162, 2012.
- [23] R. Salem. Generalized power series over zip and weak zip rings. Southeast Asian Bull. of Mathematics, 37:259–268, 2013.
- [24] J. Zelmanowitz. The finite intersection property on annihilator right ideals. Proc. Amer. Math. Soc., 57(2):213–216, 1976.

References

- [1] M. Alaghmandan, R. Nasr-Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, *Bull, Austral. Math, Soc.*, 82: 274-281, 2010.
- [2] J. T. Burnham, Closed ideals in subalgebras of Banach algebras, I, Proc. Amer. Math. Soc., 32: 551-555, 1972.
- [3] C. A. Jones, C. D. Lahr, Weak and norm approximate identities, *Pacific J. Math.*, 72(1): 99-104, 1977.

- [4] Z. Hu, M. Sangani Monfared and T. Traynor, On character amenable Banach algebras, Studia Math., 193 (1): 53-78, 2009.
- [5] E. Kaniuth, A course in commutative Banach algebras, Springer Verlag, Graduate texts in mathematics, 2009.
- [6] E. Kaniuth, A. Lau, J. Pym, On φ-amenability of Banach algebras, Math. Proc. Camp. Phil. Soc., 144: 85-96, 2008.
- [7] J. Laali and M. Fozouni, On Δ-weak φ-amenability of Banach algebras, U.P.B. Sci. Bull., Series A, 77(4): 165-176, 2015.
- [8] A. T. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, *Fund. Math.*, 118: 161-175, 1983.
- [9] M. S. Monfared, On certain products of Banach algebras with application to harmonic analysis, *Studia Math.*, 178: 277-294, 2007.
- [10] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Combridge Philos. Soc., 144: 697-706, 2008.
- [11] H. Samea, Essential amenability of abstract Segal algebras, Bull. Aust. Math. Soc., 79: 319-325, 2009.