
EUROPEAN JOURNAL OF MATHEMATICAL SCIENCES
Vol. 4, No. 1, 2018, 27-34
ISSN 2147-5512 – www.ejmathsci.org
Published by New York Business Global

Relative Spaces as a global concept for Topology
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Abstract. In the past several mathematical concepts were introduced and studied for describing
structures of a topological kind. Among them we mention here the strong topological universe of
preuniform convergence spaces in the sense of Preuss, which enables to simultaneously express
"topological" and "uniform" aspects. The introduced concept of set-convergences by Wyler
considers the convergence of filters to bounded subsets, and therefore it generalizes the well-
known classical point-convergences as well as the supertopologies in the sense of Doîtchinóv.
Nearness, defined by Herrlich contains in particular contiguities and proximities by studying the
internal relationship of sets which are being near in some special sense. At last we still mention
the concept of so-called b-topological spaces in which hull-operators are defined on bounded
subsets of a carrier set generalizing topological closures in a natural way. Now, the question
raises whether there exists a suitable concept for a common study of all former cited structures?
At this point we introduce the basics of so-called relative spaces, shortly RELspaces with its
corresponding relative maps, shortly RELmaps between them. Hence it is possible to embed the
mentioned categories into REL, the category of RELspaces and RELmaps, respectively. Now,
this fact of unification being established we turn us towards the study of the relationship between
suitable RELspaces and the corresponding strict symmetric topological extensions. Thus, our
new presented connection generalizes those one which were studied by Bentley, Ivanova and
Ivanov, Lodato and Smirnov, respectively.
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1. Introduction

Fundamental concepts for describing structures of a topological kind can be essentially
summarized by the following constructs, i.e.

by the UNIFORM CONVERGENCE with the containing concepts of uniformities
and point-convergences, respectively (see Preuß, Kent);

by the SET-CONVERGENCE with the containing concepts of point-convergences
and neighborhoods or supertopologies, respectively (see Tozzi, Wyler, Doîtchinóv);
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by the NEARNESS with the containing concepts of contiguities and proximities,
respectively (see Ivanova + Bentley + Herrlich + Lodato);

but last not least by the HULLNESS with the containing concepts of closures and
b-topologies, respectively (see Čech + Kuratowski + Leseberg).

Here, we should note that the above mentioned drafts differs from each other and if
possible only coincide in some special cases. But as next we will introduce a common
concept in which all the former mentioned species then can be described as special parts.

2. Unification

We call a triple (X,BX , r) consisting of a set X, boundedness BX and a Relative-operator,
shortly RELop r : BX −→ P (REL(X)) RELative space, shortly RELspace provided r
satisfies the following conditions, i.e.

(relop1) B ∈ BX\{∅} and R1 << R ∈ r(B) imply R1 ∈ r(B);

(relop2) B ∈ BX implies {∅} 6∈ r(B);

(relop3) R ∈ r(∅) iff R = ∅;

(relop4) x ∈ X implies {{x} × {x}} ∈ r({x}).

Here, BX ⊂ PX (power set of X) denotes a collection of bounded subsets of X, known
as B-set or boundedness on X, respectively, i.e. BX has the following properties:

(b0) ∅ ∈ BX ;

(b1) B1 ⊂ B ∈ BX imply B1 ∈ BX ;

(b2) x ∈ X implies {x} ∈ BX .

REL(X) denotes the set of all Relative-systems R ⊂ P (X×X), shortly RELsystems (for
X), ordered by setting: R1 << R iff ∀R1 ∈ R1∃R ∈ R R1 ⊃ R. For B ∈ BX ,R ∈ r(B)
then is called B-RELsystem (for r). Moreover, for ρ ⊂ PX ρ× ρ is defined by ρ× ρ :=
{F × F : F ∈ ρ}, where F × F : ={(x, z) ∈ X ×X : x, z ∈ F}.
For RELspaces (X,BX , r), (Y,BY , s) a function f : X −→ Y is called RELative-map,
shortly RELmap, provided f satisfies the following conditions, i.e.

(rmap1) B ∈ BX implies f [B] ∈ BY , which means f is bounded ;

(rmap2) B ∈ BX and R ∈ r(B) imply f×R ∈ s(f [B]), where f×R : ={(f × f)[R] : R ∈
R} with (f × f)[R] : ={(f × f)(x, z) : (x, z) ∈ R} = {(f(x), f(z)) : (x, z) ∈ R}.

Now, by REL we denote the topological construct, whose objects are the RELspaces
and as morphisms the RELmaps between them. Additionally, we point out that each
RElspace (X,BX , r) has an underlying hull-operator "clr" defined by clr(∅) : = ∅ and
clr(A) : ={x ∈ X : ∃R ∈ r({x})A×A ∈ R}, if A 6= ∅.
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Theorem 1. The strong topological universe PUCONV of preuniform convergence
spaces and uniformly continuous functions is isomorphic to a suitable subcategory of
REL.

Proof. The embedding of PUCONV into REL can be described as follows: For a
given preuniform convergence space (X, JX) we define the associated RELspace (X,PX, rJX )
by setting :

rJX (∅) : ={∅} and

rJX (B) : ={R ∈ REL(X) : ∃U ∈ JX R ⊂ secU} for each B ∈ PX \ {∅}.

Here, secU : ={R ⊂ X ×X : ∀U ∈ U R ∩ U 6= ∅}.

Theorem 2. The topological construct SETCONV of set-convergence spaces and b-
continuous maps is isomorphic to a suitable subcategory of REL.

Proof. For a set-convergence space (X,BX , q) let us consider the RELop rq : BX −→
P (REL(X)) defined by setting: rq(∅) : ={∅} and rq(B) : ={R ∈ REL(X) : ∃F ∈
FIL(X)((F , B) ∈ q and R ⊂ secF ⊗ F)} for each B ∈ BX\{∅}, where in general
for filters F1,F ∈ FIL(X) F1⊗F is defined by F1⊗F : ={R ⊂ X ×X : ∃F1 ∈ F1∃F ∈
F R ⊃ F1 × F}.

Theorem 3. The topological construct PNEAR of pre-nearness spaces and n-maps is
isomorphic to a suitable full subcategory of REL.

Proof. We construct the embedding of PNEAR into REL as follows: For a given
pre-nearness space (X, ξ) we define the associated RELspace (X,PX, rξ) by setting:

rξ(∅) : ={∅} and

rξ(B) : ={R ∈ REL(X) : ∃M ⊂ PX({B} ∪M ∈ ξ and R <<M×M)} for each
B ∈ PX \ {∅}.

As next, we will consider RELspaces (X,BX , r) with underlying bornology BX . Note,
that PX defines itself a bornology, and the set of finite sets of X, the set of compact
sets of X or the set of total bounded sets of X defines bornologies on X, too. Now,
if given a bornology BX and a fixed point x ∈ X, then we can define a hull-operator
hx : BX −→ PX by setting: hx(∅) : = ∅ and hx(B) : ={x} ∪ B for each B ∈ BX\{∅}.
Then hx satisfies the axioms for being a so-called b-topology t (on BX), i.e.

(b-top1) B ∈ BX implies t(B) ∈ BX ;

(b-top2) B ∈ BX implies B ⊂ t(B);

(b-top3) t(∅) = ∅;

(b-top4) B1 ⊂ B ∈ BX imply t(B1) ⊂ t(B);
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(b-top5) B ∈ BX implies t(t(B)) ⊂ t(B);

(b-top6) B1, B2 ∈ BX imply t(B1 ∪B2) ⊂ t(B1) ∪ t(B2).

Then the triple (X,BX , t) is called b-topological space. Note, that in case if BX is sat-
urated, which means X ∈ BX , hence BX equals PX, t is defining a Kuratowski closure
operator on PX. b-continuous maps between b-topological spaces then can be defined
in an obvious way.

Theorem 4. The construct b-TOP of b-topological spaces and b-continuous maps is
isomorphic to a suitable full subcategory of REL.

Proof. For a b-topological space (X,BX , t) let us consider the RELspace (X,BX , rt),
where rt is defined by setting:

rt(∅) : ={∅} and

rt(B) : ={R ∈ REL(X) : ∃ρ ⊂ BX∃x ∈ B(R << ρ× ρ and x ∈
⋂
{t(F ) : F ∈ ρ})}

for each B ∈ BX\{∅}.

3. Extension

Now, an important investigated problem in "global topology" is that of considering topo-
logical extensions of suitable basic structures. Here, we should mention the earlier studies
of Banaschewski, Bentley, Doîtchinóv, Herrlich, Hušek, Ivanova, Ivanov, Lodato, Smirnov
and others.

Definition 1. By adjusting the fundamental definition of a topological extension to our
general concept of "Bounded Topology" we introduce the category BTEXT, whose objects
are triples (e,BX , Y ) – called b-topological extensions – where BX is B-set, X : =(X, tX)
and Y : =(Y, tY ) are topological spaces, given by closure operators, and e : X −→ Y is
function such that the following properties are satisfied, i.e.

(btex1) {tY (e[A]) : A ⊂ X} forms a base for the closed subsets of Y ;

(btex2) tY (e[X]) = Y , which means that the image of X under e is dense in Y ;

(btex3) x ∈ X and y ∈ tY ({e(x)}) imply e(x) ∈ tY ({y}), point-symmetry of tY with
respect to e;

(btex4) A ∈ PX implies tX(A) = e−1[tY (e[A])], where e−1 denotes the inverse image
of e.
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Morphisms in BTEXT have the form (f, g) : (e,BX , Y ) −→ (e′,BX′
, Y ′), where f :

X −→ X ′ and g : Y −→ Y ′ are continuous maps such that f is bounded, and the
following diagram commutes, i.e.

X
e //

f

��

Y

g

��
X ′

e′ // Y ′

.

If (f, g) : (e,BX , Y ) −→ (e′,BX′
, Y ′) and (f ′, g′) : (e′,BX′

, Y ′) −→ (e′′,BX′′
, Y ′′) are

BTEXT-morphisms, then they can be composed according to the rule:

(f ′, g′) � (f, g) : =(f ′ ◦ f, g′ ◦ g) : (e,BX , Y ) −→ (e′′,BX′′
, Y ′′),

where "◦" denotes the composition of maps. Further, we note that in the case if BX
is saturated the above definition coincide with the usual one of a strict topological ex-
tension in "classical topology". Observe too, that the axiom (btex4) in this definition is
automaticially satisfied if e : X −→ Y is a topological embedding.

Lemma 1. Let (e,BX , Y ) be a b-topological extension, then we can immediately associate
the RELspace (X,BX , re), where re is defined by setting:

re(∅) : ={∅} and

re(B) : ={R ∈ REL(X) : ∃M ⊂ PX(R << M ×M and
⋂
{tY (e[A]) : A ∈

M∪ {B}}} 6= ∅)} for each B ∈ BX\{∅}.

Moreover, we are getting the equality clre(A) = tX(A) for each A ∈ PX.

Corollary 1. The RELspace (X,BX , re)) satisfies in addition the conditions for being
a nearformic CLANRELspace, which concretely means that re possesses the following
properties, i.e.

(relop5) ∅ 6= B1 ⊂ B ∈ BX imply r(B1) ⊂ r(B);

(relop6) R ∈ r(B), B ∈ BX\{∅} imply the existence of ρ ⊂ PX with R << ρ×ρ ∈ r(B);

(relop7) ρ ⊂ PX and clrρ × clrρ ∈ r(B), B ∈ BX\{∅} imply ρ × ρ ∈ r(B), where
clrρ : ={clr(F ) : F ∈ ρ};

(relop8) ρ1, ρ2 ⊂ PX and (ρ1∨ρ2)× (ρ1∨ρ2) ∈ r(B), B ∈ BX\{∅} imply ρ1×ρ1 ∈ r(B)
or ρ2 × ρ2 ∈ r(B), where ρ1 ∨ ρ2 : ={F1 ∪ F2 : F1 ∈ ρ1, F2 ∈ ρ2};

(cla) R ∈ r(B), B ∈ BX\{∅} imply the existence of a B-RELclan C in r with R <<
C × C;

(n) M⊂ PX andM×M ∈ r(B), B ∈ BX\{∅} imply ({B} ∪M)× ({B} ∪M) ∈⋂
{r(D) : D ∈ {B} ∪ (M

⋂
BX)}.
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Remark 1. Here, for B ∈ BX\{∅}, C ⊂ PX is called B-RELclan (in r) provided the
following conditions are satisfied, i.e.

(rcla1) ∅ 6∈ C;

(rcla2) D1 ∪D2 ∈ C iff D1 ∈ C or D2 ∈ C;

(rcla3) B ∈ C;

(rcla4) C × C ∈ r(B);

(rcla5) clr(D) ∈ C, D ∈ PX \ {∅} imply D ∈ C.

We point out that for each B ∈ BX with x ∈ B xr : ={D ∈ PX : x ∈ clr(D)} is
B-RELclan in r.
Further we denote by N-CLANREL the full subcategory of REL, whose objects are the
nearformic CLANRELspaces.

Theorem 5. Let F: BTEXT −→ N-CLANREL be defined by:

(1) For a BTEXT-object (e,BX , Y ) we put F (e,BX , Y ) : =(X,BX , re);

(2) for a BTEXT-morphism (f, g) : (e,BX , Y ) −→ (e′,BX′
, Y ′) we put F (f, g) : = f .

Then F:BTEXT −→ N-CLANREL is a functor.
Now, this former being established we are going to introduce a related functor in the
opposite direction.

Theorem 6. We obtain a functor G:N-CLANREL −→ BTEXT by setting:

(i) G(X,BX , r) : =(eX ,BX , XC) for any nearformic CLANRELspace (X,BX , r) with
X : =(X, clr) and XC : =(XC , tXC ), where XC : ={C ⊂ PX : C is B-RELclan in r
for some B ∈ BX\{∅}}, and for each AC ⊂ XC we put:

tXC (AC) : ={C ∈ XC : 4AC ⊂ C} with 4AC : ={F ∈ PX : ∀C ∈ AC F ∈ C}.

(By convention 4AC = PX if AC = ∅). eX : X −→ XC denotes that function
which assigns the {x}-RELclan xr to each x ∈ X.

(ii) G(f) : =(f, fC) for any RELmap f : (X,BX , r) −→ (Y,BY , s), where fC : XC −→
Y C is the function defined by setting:

fC(C) : ={D ∈ PY : f−1[cls(D)] ∈ C} for each C ∈ XC .

Theorem 7. Let F : BTEXT −→ N-CLANREL and G : N-CLANREL −→
BTEXT be the above defined functors.
For each object (X,BX , r) of N-CLANREL let n(BX ,r) denote the identity map idX :

F (G(X,BX , r)) −→ (X,BX , r). Then n : F ◦ G −→ 1N-CLANREL is a natural equiva-
lence from F ◦G to the identity functor 1N-CLANREL, i.e.

idX : F (G(X,BX , r)) −→ (X,BX , r)
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is RELmap in both directions for each object (X,BX , r), and the following diagram
commutes for each RELmap f : (X,BX , r) −→ (Y,BY , s), i.e.

F (G(X,BX , r)) idX //

F (G(f))

��

(X,BX , r)

f

��
F (G(Y,BY , s)) idY // (Y,BY , s)

Corollary 2. For a b-topological T1-extension (e,BX , Y ), where in addition (Y, tY ) is T1-
space, then the associated RELspace (X,BX , re) is separated by satisfying the following
condition, i.e.

(sep) x, z ∈ X and {{z} × {z}} ∈ r({x}) imply x = z.

Corollary 3. For a separated nearformic CLANRELspace (X,BX , r) the function eX :
X −→ XC is injective.

Remark 2. As a short résumé of Theorem 7 we now can state that each nearformic
CLANRELspace (X,BX , r) can be densely embedded into a topological space Y so that
the set of the closures of all sets in X forms a base for the closed subsets of Y . In
addition we note that the closures of the members of suitable B-RELsystems meet the
closure of B in Y . Thus, Doîtchinóv’s "extension theorem" can be considered as a special
part of this theorem. Moreover, in the saturated case the theorem essentially coincide
with that of Bentley, presented by him in the past using bunch-determined nearness spaces.
Hence, Lodatos’ theorem and that of Ivanova also can be dealt with!

References

[1] Banaschewski, B. Extensions of Topological Spaces. Canadian Math. Bull. 7(1964),
1–23;

[2] Bentley, H.L. Nearness spaces and extension of topological spaces. In: Studies in
Topology, Academic Press, NY (1975), 47–66;

[3] Cěch, E. Topological spaces, revised edition by M. Frolik and M. Katětov, Inter-
science, London (1960);

[4] Choquet, G. Convergences. Ann. Univ. Grenoble Sect. math. Phys. (NS) 23, 57–112;

[5] Doîtchînov, D. Compactly determined extensions of topological spaces. SERDICA
Bulgarice Math. Pub. 11(1985), 269–286;

[6] Fischer, H.R. Limesräume, Math. Ann. 137, 269 – 303;

[7] Herrlich, H.: A concept of nearness. Gen. Top. Appl. 5(1974), 191–212;



REFERENCES 34

[8] Hogbe – Nlend, H. Bornologies and functional analysis. Amsterdam, North-Holland
Pub. Co(1977);
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