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1. Introduction

An algebra that satisfies both of the identities
(xy)y = x(yy) (the right alternative identity),
(xx)y = x(xy) (the left alternative identity)

is called an alternative algebra. As algebraic objects, alternative algebras were studied
([18]) in connection with some problems in projective planes (see also [9], where it is shown
that alternative algebras satisfy some specific identities that are later called Moufang
identities). For basics in the general theory of alternative algebras, one may refer to [3],
[11] and [4], where some examples of alternative algebras could be found.

As a generalization of alternative algebras, right alternative algebras were first studied
in [1]. An algebra is said to be right alternative if it satisfies only the right alternative
identity. In [1] an example of a five-dimensional right alternative algebra that is not left
alternative is constructed. Right alternative algebras have been further studied in, e.g.,
[7], [14], [15], [16] (see also [4] and references therein). In [14] some properties of right
alternative algebras were used to solve a problem in projective planes.

In [2] and [8] a Z2-graded generalization of the Lie theory is considered with the
introduction of “Z2-graded Lie algebras” (now called Lie superalgebras; see [6] and [12]
for a survey on the subject). An extension of such a Z2-gradation to other types of algebras
is first performed in [5]. In this scheme, alternative superalgebras were introduced in [17]
and in [13] it was shown how one can obtain the graded identities defining a type of
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superalgebras from the known identities satisfied by its Grassmann envelope of the same
type.

As in [7] and [14], where fundamental identities characterizing right alternative alge-
bras were found, the purpose of this paper is to consider the explicit superization of some
of these identities in case of right alternative superalgebras. We find that these superiden-
tities could be useful as a working tool while dealing with some issues on right alternative
(or even alternative) superalgebras. We stress that we do not resort to the Grassmann
envelope of the corresponding right alternative superalgebra for finding these superidenti-
ties, but we rather start from the Teichmüller identity, the right superalternativity and the
Z2-graded version of the function g(w, x, y, z) defined in [7] for right alternative algebras.

In section 2 we recall some useful notions and prove (as for usual algebras) some gen-
eral identities that hold in any superalgebra with consequences in right alternative or
alternative superalgebras. In section 3 we first define the Z2-graded version of the func-
tion g(w, x, y, z) and prove that it is identically zero. Next, we prove some fundamental
identities in right alternative superalgebras and observe that they are the Z2-graded gen-
eralization of corresponding well-known identities in right alternative algebras. In section
4 we point out some implications of these identities. In particular, we get some Z2-graded
Moufang-type identities for right alternative superalgebras.

Thoughout this paper we will work over a ground field of characteristic not 2.

2. Preliminaries

Definition 1. A binary algebra (A, ·) is called a (binary) superalgebra (i.e. a Z2-graded
binary algebra) whenever the vector space A can be expressed as a direct sum of subspaces
A = A0 ⊕ A1, where Ai · Aj ⊆ Ai+j, i, j ∈ Z2. The subspaces A0 and A1 are called
respectively the even and odd parts of the superalgebra A; so are also called the elements
from A0 and A1 respectively.

All elements in A are assumed to be homogeneous, i.e. either even or odd. For a given
element x ∈ Ai (i = 0, 1), by x = i we denote its parity. In order to reduce the number
of braces, we use juxtaposition whenever applicable and so, e.g., xy · z means (x · y) · z.
Moreover, for simplicity and where there is no danger of confusion, we write xy in place
of x · y.

In a superalgebra (A, ·), the supercommutator and the super Jordan product of any two
elements x, y ∈ A are defined respectively as [x, y] := xy − (−1)x yyx and x ◦ y := xy +
(−1)x yyx. For any x, y, z ∈ A, the associator (x, y, z) is defined as (x, y, z) := xy ·z−x·yz.

Definition 2. ([2], [5]). A superalgebra (A, ·) is called a Lie superalgebra if
xy = −(−1)x yyx (super anticommutativity),
xy · z + (−1)x(y+z)yz · x + (−1)z(x+y)zx · y = 0 (super Jacobi identity)

for all x, y, z ∈ A. A superalgebra (A, ·) is said to be Lie-admissible, if (A, [, ]) is a Lie
superalgebra.

Definition 3. ([17]). A superalgebra A is said to be right alternative if
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(x, y, z) = −(−1)y z(x, z, y) (right superalternativity) (1)
for all x, y, z ∈ A. If, moreover, the left superalternativity (x, y, z) = −(−1)x y(y, x, y)
holds in A, then A is said to be alternative.

If A has zero odd part, then (1) reads as (x, y, z) = −(x, z, y) which is the linearized
form of the right alternativity xy · y = x · yy.

The trilinear function (x, y, z) + (y, z, x) + (z, x, y) is shown to be very useful in the
study of nonassociative algebras. Here we consider its Z2-graded version as

S(x, y, z) := (x, y, z) + (−1)x(y+z)(y, z, x) + (−1)z(x+y)(z, x, y)

and, as for usual algebras, define “(−1, 1)-superalgebras” as right alternative superalge-
bras satisfying S(x, y, z) = 0.

Consider in A the following multilinear function

f(w, x, y, z) := (wx, y, z)− (w, xy, z) + (w, x, yz)− w(x, y, z)− (w, x, y)z.

The following identities hold in any superalgebra.

Proposition 1. Let (A, ·) be a superalgebra. Then
f(w, x, y, z) = 0, (2)
[xy, z]− x[y, z]− (−1)y z[x, z]y = (x, y, z)− (−1)y z(x, z, y)

+(−1)z(x+y)(z, x, y), (3)
[xy, z]− [x, y]z + (−1)y z[xz, y]− (−1)y z[x, z]y = (−1)x y(y, x, z)

+(−1)z(x+y)(z, x, y), (4)
[xy, z] + (−1)x(y+z)[yz, x] + (−1)z(x+y)[zx, y] = S(x, y, z), (5)
(x ◦ y) ◦ z − (−1)y z(x ◦ z) ◦ y = S(x, y, z)− (−1)x yS(y, x, z) + 2(−1)x y(y, x, z)

−2(−1)z(x+y)(z, x, y) + [x, [y, z]] (6)
for all w, x, y, z in A.

Proof. The identity (2) follows by direct expansion of associators in f(w, x, y, z). Next
we have

[xy, z]− x[y, z]− (−1)y z[x, z]y = xy · z − (−1)z(x+y)z · xy
−x(yz − (−1)y zzy)− (−1)y z(xz − (−1)x zzx)y = {xy · z − x · yz}
−(−1)y z{xz · y − x · zy}+ (−1)z(x+y){zx · y − z · xy}
= (x, y, z)− (−1)y z(x, z, y) + (−1)z(x+y)(z, x, y)

and so we get (3). As for (4), we compute
[xy, z]− [x, y]z + (−1)y z[xz, y]− (−1)y z[x, z]y = xy · z
−(−1)z(x+y)z · xy − (xy − (−1)x yyx)z + (−1)y z(xz · y − (−1)y(x+z)y · xz)
−(−1)y z(xz − (−1)x zzx)y = (−1)x y(yx · z − y · xz)
+(−1)z(x+y)(zx · y − z · xy) = (−1)x y(y, x, z) + (−1)z(x+y)(z, x, y),

which gives (4).
Expanding the associators in the right-hand side of (5) and next rearranging terms,

we get its left-hand side.
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Expanding the left-hand side of (6), we have
(x ◦ y) ◦ z − (−1)y z(x ◦ z) ◦ y = xy · z + (−1)x y+x z+y zz · yx− (−1)y zxz · y
−(−1)x(y+z)y · zx− (−1)z(x+y)(z, x, y) + (−1)x y(y, x, z)
= xy · z + (−1)x y+x z+y zz · yx− (−1)x y+x z+y zzy · x + (−1)x y+x z+y zzy · x
−(−1)y zxz · y − (−1)x(y+z)y · zx + (−1)x(y+z)yz · x− (−1)x(y+z)yz · x
−(−1)z(x+y)(z, x, y) + (−1)x y(y, x, z)
= (x, y, z)− (−1)x y+x z+y z(z, y, x) + (−1)x(y+z)(y, z, x)
−(−1)z(x+y)(z, x, y) + (−1)x y(y, x, z)
+x · yz − (−1)x(y+z)[y, z] · x− (−1)y zxz · y
= (x, y, z)− (−1)x y+x z+y z(z, y, x) + (−1)x(y+z)(y, z, x)
−(−1)z(x+y)(z, x, y) + (−1)x y(y, x, z) + [x, [y, z]]− (−1)y z(x, z, y)
= (x, y, z) + (−1)x(y+z)(y, z, x) + (−1)z(x+y)(z, x, y)
−2(−1)z(x+y)(z, x, y) + 2(−1)x y(y, x, z)
−(−1)x y(y, x, z)− (−1)y z(x, z, y)− (−1)x y+x z+y z(z, y, x) + [x, [y, z]]
= S(x, y, z)− (−1)x yS(y, x, z) + 2(−1)x y(y, x, z)− 2(−1)z(x+y)(z, x, y) + [x, [y, z]]

and so we get (6).

The identity (2) is usually called the Teichmüller identity. Observe that, up to (−1)y z,
the identity (4) is symmetric with respect to y and z.

Upon the additional requirement of right superalternativity or alternativity on (A, ·),
we have the following two corollaries.

Corollary 1. If (A, ·) is a right alternative superalgebra, then
(x ◦ y) ◦ z − (−1)y z(x ◦ z) ◦ y = 2(x, y, z) + [x, [y, z]], (7)
[x, y]z − x[y, z]− (−1)y z[xz, y] = 2(x, y, z) + (−1)x(y+z)(y, z, x), (8)
S(x, y, z) + (−1)y zS(x, z, y) = 0, (9)
[x ◦ y, z] + (−1)x(y+z)[y ◦ z, x] + (−1)z(x+y)[z ◦ x, y] = 0, (10)
[[x, y], z] + (−1)x(y+z)[[y, z], x] + (−1)z(x+y)[[z, x], y] = 2S(x, y, z) (11)

for all x, y, z in A. In particular, (A, ·) is Lie-admissible if and only if S(x, y, z) = 0
i.e. (A, ·) is (−1, 1).

Proof. The application of the right superalternativity (1) to the right-hand side of (6)
gives (7).

Subtracting memberwise (4) from (3) and next using the right superalternativity, we
get (8).

The identity (9) follows by direct expansion of S(x, y, z), S(x, z, y) and the use of the
right superalternativity.

As for (10), we start from (9) and replace S(x, y, z) and S(x, z, y) with their corre-
sponding expressions from (5). Then, rearranging terms, we get (10) with the definition
of the super Jordan product in mind.

In (3) let permute x and y and next multiply by (−1)x y to get
[(−1)x yyx, z]− (−1)x yy[x, z]− (−1)x y[y, z]x = (−1)x y(y, x, z)− (−1)x(y+z)(y, z, x)
+(−1)x y+z(x+y)(z, y, x).

Now, subtracting memberwise the equality above from (3), we get
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[xy, z]− x[y, z]− (−1)y z[x, z]y − [(−1)x yyx, z]− (−1)x yy[x, z]− (−1)x y[y, z]x
= (x, y, z)− (−1)y z(x, z, y) + (−1)z(x+y)(z, x, y)− (−1)x y(y, x, z)
+(−1)x(y+z)(y, z, x)− (−1)x y+z(x+y)(z, y, x)

i.e.
{[xy, z]− [(−1)x yyx, z]}+ {(−1)x(y+z)[y, z]x− x[y, z]}
+{−(−1)y z[x, z]y + (−1)x yy[x, z]} = {(x, y, z)− (−1)y z(x, z, y)}
+{−(−1)x y(y, x, z) + (−1)x(y+z)(y, z, x)}+ {(−1)z(x+y)(z, x, y)
−(−1)x y+z(x+y)(z, y, x)}

and so, by the definition of the supercommutator and the right superalternativity, we come
to (11).

The last assertion of the corollary is obvious.

Corollary 2. If (A, ·) is a right alternative superalgebra, then

[x ◦ y, z] = (−1)y z[x, z] ◦ y + x ◦ [y, z] + 2(x, y, z) + 2(−1)x y(y, x, z) (12)

for all x, y, z in A. Moreover, if (A, ·) is alternative, then

[x ◦ y, z] = (−1)y z[x, z] ◦ y + x ◦ [y, z]. (13)

Proof. In (3) let permute x and y and next multiply each term by (−1)x y. Then we get

[(−1)x yyx, z]− (−1)x yy[x, z]− (−1)x y(−1)x z[y, z]x
= (−1)x y(y, x, z)− (−1)x(y+z)(y, z, x) + (−1)x y+z(x+y)(z, y, x). (14)

Adding memberwise (3) and (14) and next rearranging terms, we obtain
[x ◦ y, z]− x ◦ [y, z]− (−1)x yy ◦ [x, z]
= {(x, y, z)− (−1)y z(x, z, y)}+ {(−1)x y{(y, x, z)− (−1)x(y+z)(y, z, x)}
+{(−1)x y+z(x+y)(z, y, x) + (−1)z(x+y)(z, x, y)}
= 2(x, y, z) + 2(−1)x y(y, x, z) (by the right superalternativity)

which proves (12).
The identity (13) follows from (12) by the left superalternativity.

Remark 1. If (A, ·) has zero odd part, then the identities (2)-(13) reduce to their ungraded
counterparts in usual algebras.

3. Main results

Throughout this section, (A, ·) denotes a right alternative superalgebra and we will
prove some fundamental identities characterizing right alternative superalgebras.

First, we define on (A, ·) the following multilinear function

g(x,w, y, z) := (−1)w(y+z)(x,w, yz) + (−1)w z(x, y, wz)
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−(−1)w z+w y+y z(x,w, z)y − (x, y, z)w.

One observes that if A has zero odd part, then the function g(x,w, y, z) is precisely
the one defined in [7]. As a tool in the proof of part of the results below, we show that
g(x,w, y, z) is identically zero.

Lemma 1. For all w, x, y, z in A, the following identity holds:
g(x,w, y, z) = 0. (15)

Proof. By (2) and right superalternativity (1), we have
0 = (−1)w(y+z)f(x,w, y, z)− (−1)y zf(x, z, y, w) + (−1)w z+w y+y zf(x,w, z, y)

+(−1)w zf(x, y, w, z)− (−1)y(w+z)f(x, z, w, y) + f(x, y, z, w)
= (−1)w(y+z){(xw, y, z)− (x,wy, z) + (x,w, yz)− x(w, y, z)− (x,w, y)z}
−(−1)y z{(xz, y, w)− (x, zy, w) + (x, z, yw)− x(z, y, w)− (x, z, y)w}
+(−1)w z+w y+y z{(xw, z, y)− (x,wz, y) + (x,w, zy)− x(w, z, y)− (x,w, z)y}
+(−1)w z{(xy,w, z)− (x, yw, z) + (x, y, wz)− x(y, w, z)− (x, y, w)z}
−(−1)y(w+z){(xz,w, y)− (x, zw, y) + (x, z, wy)− x(z, w, y)− (x, z, w)y}
+{(xy, z, w)− (x, yz, w) + (x, y, zw)− x(y, z, w)− (x, y, z)w}
= 2[(−1)w(y+z)(x,w, yz) + (−1)w z(x, y, wz)
−(−1)w z+w y+y z(x,w, z)y − (x, y, z)w] (after rearranging terms)
= 2g(x,w, y, z)

and so we get (15).

We can now prove the following

Theorem 1. In (A, ·), the identities

(wx, y, z) + (w, x, [y, z]) = (−1)x(y+z)(w, y, z)x + w(x, y, z), (16)
(x, z, y ◦ w) = (x, z ◦ y, w) + (−1)w y(x, z ◦ w, y) (17)

hold for all w, x, y, z in A.

Proof. We have
0 = f(w, x, y, z)− g(w, z, x, y) (by (2) and (15))

= (wx, y, z)− (w, xy, z) + (w, x, yz)− w(x, y, z)
−(w, x, y)z − (−1)z(x+y)(w, z, xy)− (−1)y z(w, x, zy)
+(−1)x(y+z)+y z(w, z, y)x + (w, x, y)z
= (wx, y, z) + (w, x, [y, z])− (−1)x(y+z)(w, y, z)x− w(x, y, z)
(by right superalternativity)

which yields (16). As for (17), we proceed as follows.
0 = (−1)w yf(x, z, w, y) + f(x, z, y, w) (by (2))

= {(−1)w y(xz,w, y)− (−1)w y(x, zw, y) + (−1)w y(x, z, wy)
−(−1)w yx(z, w, y)− (−1)w y(x, z, w)y}
+{(xz, y, w)− (x, zy, w) + (x, z, yw)− x(z, y, w)− (x, z, y)w}
= −(−1)w y(x, zw, y)− (x, zy, w) + (x, z, yw)
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+(−1)w y(x, z, wy) + (−1)w(y+z)(x,w, z)y + (−1)y z(x, y, z)w
+[(−1)w y(xz,w, y) + (xz, y, w)− (−1)w yx(z, w, y)− x(z, y, w)]
= (x, zw, y)− (x, zy, w) + (x, z, yw) + (−1)w y(x, z, wy)
+(−1)w(y+z)(x,w, z)y + (−1)y z(x, y, z)w (since, by right superalternativity, the ex-

pression in bracket above is zero)
= −(−1)w y(x, zw, y)− (x, zy, w) + (x, z, yw)
+(−1)w y(x, z, wy) + (−1)w(y+z)+y z(x,w, yz) + (−1)z(w+y)(x, y, wz) (by (15))
= −(−1)w y(x, zw, y)− (x, zy, w) + (x, z, y ◦ w)
−(−1)y z(x, yz, w)− (−1)w(y+z)(x,wz, y),

which leads to (17).

In order to prove the identity (23) below, we first prove that the following identity
holds in (A, ·).

Lemma 2. The identity

(−1)(t+y)(w+z)+t y[(x, yz, w) + (−1)w z(x, yw, z) + (x, y, z)w + (−1)w z(x, y, w)z] · t
+[(x, tz, w) + (−1)w z(x, tw, z) + (x, t, z)w + (−1)w z(x, t, w)z] · y

= −(x, t · (z ◦ w), y) + (−1)y(w+z)(x, t, y · (z ◦ w)) (18)

holds for all t, w, x, y, z in A.

Proof. Write (15) as

(x, y, wz) = −(−1)w y(x,w, yz) + (−1)y(w+z)(x,w, z)y + (−1)w z(x, y, z)w. (19)

Now in (19) replace y with t, w with y and z with z ◦ w to get
(x, t, y · (z ◦ w)) = −(−1)t y(x, y, t · (z ◦ w)) + (−1)y(w+z)(x, t, z ◦ w)y

+(−1)t(w+y+z)(x, y, z ◦ w)t
i.e.

(−1)y(w+z)(x, t, y · (z ◦ w))− (x, t · (z ◦ w), y)
= (x, t, z ◦ w)y + (−1)(t+y)(w+z)+t y(x, y, z ◦ w)t. (20)

Next we have
(x, t, z ◦ w) = (x, t, zw) + (−1)w z(x, t, wz)

= −(−1)t z(x, z, tw) + (−1)w z(x, t, w)z − (−1)w(t+z(x,w, tz)
+(x, t, z)w (by (19))

i.e., by the right superalternativity,

(x, t, z ◦ w) = (−1)w z(x, tw, z) + (−1)w z(x, t, w)z + (x, tz, w) + (x, t, z)w. (21)

Likewise, one has

(x, y, z ◦ w) = (−1)w z(x, yw, z) + (−1)w z(x, y, w)z + (x, yz, w) + (x, y, z)w. (22)
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Therefore, from (20) and replacing (x, t, z ◦ w) and (x, y, z ◦ w) with their expressions
from (21) and (22) respectively, we have

(−1)y(w+z)(x, t, y · (z ◦ w))− (x, t · (z ◦ w), y)
= (x, t, z ◦ w)y + (−1)(t+y)(w+z)+t y(x, y, z ◦ w)t
= [(−1)w z(x, tw, z) + (−1)w z(x, t, w)z + (x, tz, w) + (x, t, z)w] · y
+(−1)(t+y)(w+z)+t y[(−1)w z(x, yw, z) + (−1)w z(x, y, w)z + (x, yz, w) + (x, y, z)w] · t

which proves (18).

We are now in position to prove the following

Theorem 2. The identity

(−1)(t+y)(w+z)+t y[(x, y, z)w + (−1)w z(x, y, w)z] · t
+[(x, t, z)w + (−1)w z(x, t, w)z] · y
−(−1)t(y+z)+y(w+z)(x, y, z) · tw − (−1)(t+z)(w+y)+w y(x, y, w) · tz
−(−1)w y(x, t, z) · yw − (−1)z(w+y)(x, t, w) · yz = 0 (23)

holds for all t, w, x, y, z in A.

Proof. From (18) we have

(−1)(t+y)(w+z)+t y[(x, y, z)w + (−1)w z(x, y, w)z] · t
+[(x, t, z)w + (−1)w z(x, t, w)z] · y
= (−1)y(w+z)(x, t, y · (z ◦ w))− (x, t · (z ◦ w), y)
−(−1)(t+y)(w+z)+t y[(−1)w z(x, yw, z) + (x, yz, w)]t
−[(−1)w z(x, tw, z) + (x, tz, w)]y. (24)

Now, starting from the left-hand side of (23), we make the following transformations.
{(−1)(t+y)(w+z)+t y[(x, y, z)w + (−1)w z(x, y, w)z] · t

+[(x, t, z)w + (−1)w z(x, t, w)z] · y}
−(−1)t(y+z)+y(w+z)(x, y, z) · tw − (−1)(t+z)(w+y)+w y(x, y, w) · tz
−(−1)w y(x, t, z) · yw − (−1)z(w+y)(x, t, w) · yz
= {(−1)y(w+z)(x, t, y · (z ◦ w))− (x, t · (z ◦ w), y)
−(−1)(t+y)(w+z)+t y[(−1)w z(x, yw, z) + (x, yz, w)]t
−[(−1)w z(x, tw, z) + (x, tz, w)]y}
−(−1)t(y+z)+y(w+z)(x, y, z) · tw − (−1)(t+z)(w+y)+w y(x, y, w) · tz
−(−1)w y(x, t, z) · yw − (−1)z(w+y)(x, t, w) · yz (replacing the expression in

{· · · } above by its equivalent counterpart from (24))
= (−1)y(w+z)(x, t, y · (z ◦ w))− (x, t · (z ◦ w), y)
−{(−1)t(y+z)+y(w+z)(x, y, z) · tw + (−1)w z(x, tw, z)y}
−{(−1)(t+z)(w+y)+w y(x, y, w) · tz + (x, tz, w)y}
−{(−1)w y(x, t, z) · yw + (−1)(t+z)(w+y)+t z+w y(x, yw, z)t}
−{(−1)z(w+y)(x, t, w) · yz + (−1)(t+y)(w+z)+t y(x, yz, w)t} (rearranging terms)

= (−1)y(w+z)(x, t, y · (z ◦ w))− (x, t · (z ◦ w), y)
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−{(−1)z(w+y)(x, tw, yz)− (−1)w z(x, tw · z, y)}
−{(−1)w y(x, tz, yw)− (x, tz · w, y)}
−{(−1)(t+z)(w+y)+w y(x, yw, tz) + (−1)z(w+y)+w y(x, t, yw · z)}
−{(−1)y(t+w)+z(t+y)(x, yz, tw) + (−1)y(z+w)(x, t, yz ·w)} (applying (15) and next the

right superalternativity to each of the expressions in {· · · } above)
= (−1)y(w+z)(x, t, y · (z ◦ w))− (x, t · (z ◦ w), y)

+(x, tz · w + (−1)w ztw · z, y)− (−1)y(w+z)(x, t, yz · w + (−1)w zyw · z)
−{(−1)z(w+y)(x, tw, yz) + (−1)y(t+w)+z(t+y)(x, yz, tw)}
−{(−1)w y(x, tz, yw) + (−1)(t+z)(w+y)+w y(x, yw, tz)} (rearranging terms)

= (−1)y(w+z)(x, t, y · (z ◦ w))− (x, t · (z ◦ w), y)
+(x, tz ·w + (−1)w ztw · z, y)− (−1)y(w+z)(x, t, yz ·w + (−1)w zyw · z) (applying the

right superalternativity to each of the expressions in {· · · } above)
= (−1)y(w+z)(x, t, y · (z ◦ w))− (x, t · (z ◦ w), y)

+(x, t · zw + (−1)w zt · wz, y)− (−1)y(w+z)(x, t, y · zw + (−1)w zy · wz) (by the right
superalternativity)

= (−1)y(w+z)(x, t, y · (z ◦ w))− (x, t · (z ◦ w), y)
+(x, t · (z ◦ w), y)− (−1)y(w+z)(x, t, y · (z ◦ w))

= 0
and thus we obtain (23).

Remark 2. It is easily seen that the identities (15)-(18) and (23) are the Z2-graded gen-
eralization of identities

(x,w, yz) + (x, y, wz)− (x,w, z)y − (x, y, z)w = 0, (25)
(wx, y, z) + (w, x, [y, z]) = w(x, y, z) + (w, y, z)x, (26)
(x, y2, z) = (x, y, yz + zy), (27)
(x, y, y · z2) = (x, yz, z)y + (x, y, z)z · y, (28)
(x, y, z)y · z = (x, y, z) · zy (29)

respectively, all of which could be found in [7], [14], [16].

4. Some consequences

The main goal in this section is to prove that some Z2-graded Moufang-type identities
hold in right alternative superalgebras. The identities in this section are more or less direct
consequences of identity (15).

Theorem 3. Let (A, ·) be a right alternative superalgebra. Then

(xy · z)w + (−1)y z+w y+w z(xw · z)y = x(yz · w) + (−1)y z+w y+w zx(wz · y) (30)

for all w, x, y, z in A.
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Proof. In (A, ·), by (15) we have
(−1)w(y+z)(x,w, yz) + (−1)w z(x, y, wz) = (−1)w z+w y+y z(x,w, z)y + (x, y, z)w

i.e., by the right superalternativity,
−(x, yz, w)− (−1)w(y+z)+y z(x,wz, y) = (−1)w(y+z)+y z(x,w, z)y + (x, y, z)w. (31)

Next, expanding associators in (31), one gets (30).

Remark 3. If A has zero odd part and y = w, from (30) one gets the right Bol identity
(xy · z)y = x(yz · y) formerly called the “right Moufang identity” (see, e.g., [9] and [4]).

In case when (A, ·) is alternative, then (31) yields

(−1)x(y+z)(yz, x, w) + (−1)x(w+z)+w(y+z)+y z(wz, x, y)
= (−1)z(x+y)(z, x, y)w + (−1)z(x+y)+w y(z, x, w)y. (32)

If, moreover, A has zero odd part, then (32) reads as
(yz, x, w) + (wz, x, y) = (z, x, y)w + (z, x, w)y

which is the linearized form of the middle Moufang identity ([4])
(yz, x, y)− (z, x, y)y = 0.

In this sense, the identity (31) is (in part) closed to the middle Moufang identity.

The following identity is proved to be valid in right alternative algebras:

(x, z, y ◦ w) = 2(x, z, w)y − 2(x, y, z)w + (x, [z, y], w) + (x, [z, w], y)

(see [10], identity (9)). Its Z2-graded version is given by the following

Theorem 4. In a right alternative superalgebra (A, ·), the identity

(x, z, y ◦ w) = 2(−1)w y(x, z, w)y − 2(−1)y z(x, y, z)w
+(x, [z, y], w) + (−1)w y(x, [z, w], y) (33)

holds for all w, x, y, z in A.

Proof. We have
(x, z, y ◦ w) = (x, z ◦ y, w) + (−1)w y(x, z ◦ w, y) (see (17))

= (x, zy, w) + (−1)y z(x, yz, w) + (−1)w y(x, zw, y)
+(−1)w(y+z)(x,wz, y)
= (x, [z, y], w) + 2(−1)y z(x, yz, w)
+(−1)w y(x, [z, w], y) + 2(−1)w(y+z)(x,wz, y)
= (x, [z, y], w) + (−1)w y(x, [z, w], y)
+2{(−1)y z(x, yz, w) + (−1)w(y+z)(x,wz, y)}
= (x, [z, y], w) + (−1)w y(x, [z, w], y)
−2(−1)y z{(−1)w y+w z+y z(x,w, z)y + (x, y, z)w} (by (15))
= (x, [z, y], w) + (−1)w y(x, [z, w], y)
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+2(−1)w y(x, z, w)y − 2(−1)y z(x, y, z)w (by the right superalternativity)
and so we get (33).

The additional requirement of left superalternativity on (A, ·) (and so (A, ·) is alterna-
tive) yields from identities of this paper many other identities that are thusly the Z2-graded
generalization of identities characterizing alternative algebras.
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