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Abstract. In this paper, we use the modified (w
g )- expansion method to find the traveling wave

solutions for some nonlinear partial differential equations in mathematical physics namely the
Zakharov Kuznetsov BBM (ZKBBM) equation and the Boussinesq equation . When w and g are
taken some special choices, some families of direct expansion methods are obtained. we further give

three forms of expansions methods via the modified ( g′

gn )-expansion method, modified g′ -expansion

method and modified (w
g )- expansion function method when w and g satisfy decoupled differential

equations w′ = µ g, g′ = λw , where µ andλ are arbitrary constants. When the parameters are
taken some special values the solitary wave is derived from the traveling waves. This method is
reliable, simple, and gives many new exact solutions.

Key Words and Phrases: Modified ( g′

gn )-expansion method, Modified g′ -expansion method,

Modified (w
g )- expansion function method, Traveling Wave solutions; The Zakharov Kuznetsov

BBM (ZKBBM) equation; The Boussinesq equation.

1. Introduction

Nonlinear phenomena can be seen in a broad variety of scientific applications such as
plasma of physics, hydrodynamics, fluid mechanics and optics fibers, solid state, acous-
tics and other discipline. There are many effective methods for finding the analytic ap-
proximate solutions and exact solutions of NPDEs among of this methods see [1–23, 25–
35, 37, 38, 40–45]. Recently, Gepreel [24] have used the modified (wg )- expansion method
to obtain the exact solutions for the integral member of nonlinear Kadomtsev- Petviashvili
hierarchy equation. In the present paper, we use the modified (wg )- expansion method,
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where w and g are arbitrary function to study the traveling wave solutions for the following
partial differential equations :-

(i) The Zakharov Kuznetsov BBM (ZKBBM) equation [36]

ut + ux − 2 a uux − b uxx t = 0 (1)

(ii) The Boussinesq equation [39]

ut t − uxx −
(
u2
)
xx

+ uxxxx = 0 (2)

2. Description of the modified
(
w
g

)
- expansion method for NPDEs

In this section, we illustrate the main idea of the modified
(
w
g

)
- expansion method

which discussed in [24, 41, 44]. For a given nonlinear partial differential equation

P (u , ut , ux , ut t , uxx , ux t , ... ) = 0 , (3)

where u = u (x, t) is an unknown function,P is a polynomial inu = u (x, t) and its
various partial derivatives, in which the highest order derivatives and nonlinear terms are
involved.

Step 1. We use the travelling wave transformation:

u = U (ξ) , ξ = x− k t , (4)

where k is a nonzero constant. The transformation (4) permits us to convert Eq.(3) to
the following ordinary differential equation (ODE)

Q(U ,U ′ , U ′′ , ...) = 0 . (5)

Step 2. Suppose the solution of Eq. (5) can be expressed by a polynomial in a finite form

of
(
w
g

)
as follows :

U (ξ) =
m∑
i=0

ai

(
w (ξ)

g (ξ)

)i
(6)

where ai (i = 1, 2, ..., m) are arbitrary constants to be determined later,and w (ξ) , g (ξ)
satisfy the following nonlinear first order differential equation:-(

w (ξ)

g (ξ)

)′
= a + b

(
w (ξ)

g (ξ)

)
+ c

(
w (ξ)

g (ξ)

)2

, (7)

Or
w′ g − w g′ = a g2 + bw g + cw2 (8)

where a, b, c are arbitrary constants.
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Step 3. Determine the positive integer m in the formula (6) by balancing the non-
linear term(s) and the highest order derivative in Eq. (5).

Step 4. Substituting Eq. (6) into (5) along with (7), and collect all terms with the

same powers of
(
w
g

)i
, (i = 0, 1, ..., m). Setting each coefficient of

(
w
g

)i
, (i = 0, 1, ..., m)

to be zero, we yield a set of algebraic equations for ai (i = 0, 1, ..., m) and k .
Step 5. Solving these over-determined system of algebraic equations with the help of

Maple software package to determine ai (i = 0, 1, ..., m) and k .
Step 6. Using the results which obtained in the above steps to derive a series of

fundamental solutions of nonlinear partial differential equation (3).
Remark 1. Furthermore, if we put g = 1 , b = 0 , and c = 1 . In this case the solution

(6) takes the form

U (ξ) =

m∑
i=0

aiw
i , (9)

where ai (i = 0, 1, ..., m) are arbitrary constants, and w satisfy the following relation

w′ = a+ w2 . (10)

In this case the
(
w
g

)
- expansion method is equivalent to the tanh- function method. Also,

when g = 1 , and a, b, c are nonzero constants the
(
w
g

)
-expansion method is equivalent

to the Riccati expansion function method [5, 45].
Remark 2. [24, 41, 44] If we choose w = g′ , a = −µ, b = −λ, and c = −1 . In this

case the solution (6) takes the form

U (ξ) =
m∑
i=0

ai

(
g′

g

)i
(11)

where ai (i = 0, 1, ..., m) are arbitrary constants, and g satisfy the following second
order differential equation:-

g′′ + λ g′ + µ g = 0 (12)

In this case the
(
w
g

)
-expansion method is equivalent to the

(
G′

G

)
- expansion method

proposed by Wang et al [38] .

Remark 3. If we put w = g′

gn−1 , b = 0 . We have a new form of exact solution takes
the form

U (ξ) =

m∑
i=0

ai

(
g′

gn

)i
, (13)

where ai (i = 0, 1, ..., m) are arbitrary constants, and g satisfy the following nonlinear
second order differential equation

gn g′′ − n gn−1
(
g′
)2

= a g2n + c
(
g′
)2
, (14)
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which is called
(
g′

gn

)
- expansion method and when n = 2 , 3 , ... ,we have the same result

proposed in [24, 41, 44].
Remark 4. If we put w = g g′ . We have a new form of exact solution takes the form

U (ξ) =
m∑
i=0

ai
(
g′
)i

(15)

where ai (i = 0, 1, ..., m) are arbitrary constants, and g satisfy the nonlinear second
order differential equation

g′′ = a + b g′ + c
(
g′
)2

(16)

which is called (g′)- expansion method and proposed in [24, 41, 44].
Remark 5. If we have a new form of exact solution takes the form

U (ξ) =

m∑
i=0

ai

(
w

g

)i
, (17)

where ai (i = 0, 1, ..., m) are arbitrary constants, and w and g satisfy the first order dif-
ferential equations

w′ = λ g , g′ = µw , (18)

where λ andµ are arbitrary nonzero constants, which is called
(
w
g

)
- expansion function

method.

3. Applications of the modified
(
w
g

)
- expansion method for NPDEs

Here, we use the three Eq.(17) expansions methods namely the
(
g′

gn

)
-expansion

method, (g′)-expansion method and
(
w
g

)
-expansion method to construct the traveling

wave solutions for nonlinear evolution equations in mathematical physics namely, the
Zakharov Kuznetsov BBM (ZKBBM) equation and the Boussinesq equation in math-
ematical physics which are very important in the mathematical science and have been a
great attention by many researcher in physics and engineering.

3.1. Traveling wave solutions of the Zakharov Kuznetsov BBM (ZKBBM)
equation

Here, we discuss the traveling wave solution of the nonlinear the Zakharov Kuznetsov
BBM (ZKBBM) equation (1) where a,b are nonzero constants. We use the transformation

u (x, t) = u (ξ) , ξ = x− V t , (19)

where V is a constant to be determined later. Converting Eq.(1) into an ODE for u (x, t)
by using Eq.(19),we have

(1 + V ) u′ − 2 a uu′ − b V u′′′ = 0 . (20)
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Integrating Eq.(20) with respect to ξ once, we obtain

(1 + V )u− a u2 − bV u′′ + C = 0 , (21)

where C is the integration constant to be determined later.

3.1.1. Modified
(
g′

gn

)
- expansion method for the Zakharov Kuznetsov BBM

(ZKBBM) equation

Here, we use the direct method
(
g′

gn

)
-expansion method when n = 2 to find the traveling

wave solutions of Eq.(21) and by balancing the order of u′′ andu2, we get m = 2 . Let us
assume the solution of Eq.(21) has the following form:

u (ξ) = a0 + a1

(
g′

g2

)
+ a2

(
g′

g2

)2

, (22)

Noting
(
g′

g2

)′
= a + c

(
g′

g2

)2
, we have the concrete form of u′ , u′′ andu2 , then substi-

tute them into Eq.(21), collect all terms with same order of
(
g′

g2

)
, and set the coeffi-

cients of all powers of
(
w
g

)m
to zeros. We will get a system of algebraic equations for

a0, a1, a2, C andV . and after some algebraic calculations we have

C =
1

4

−V 2 − 2V − 1 + 16 b2 V 2 c2 a2

a
, a0 = −1

2

V − 1 + 8 b V c a

a
, a1 = 0 , a2 =

−6 b V c2

a
(23)

Substituting Eq.(23) and the general solution of Eq.(14) into Eq.(22), then we find the
general solution of Eq(1) has the following families:

Family 1. If. c a > 0 ,

g (ξ) =
2 c

ln
[
c
a (A1 sin (

√
a c ξ)−A2 cos (

√
ac ξ))

2
] , (24)

and
g′

g2
=

√
a

c

[
A1 cos (

√
a c ξ) +A2 sin (

√
a c ξ)

A1 sin (
√
a c ξ)−A2 cos (

√
ac ξ)

]
. (25)

,then the solution of Eq. (21) takes the form:

u (ξ) = −1

2

V − 1 + 8 b V c a

a
+
−6 b V c2

a

a

c

(
A1 cos (

√
a c ξ) +A2 sin (

√
a c ξ)

A1 sin (
√
a c ξ)−A2 cos (

√
a c ξ)

)2

, (26)

where ξ = x + V t . Consequently, the traveling wave solution for the nonlinear the Za-
kharov Kuznetsov BBM (ZKBBM) equation (1) take the form:

u1(x, t) =
V + 1− 8 b V c a

2 a
− 6 b V c

(
A1 cos (

√
a c (x+ V t)) +A2 sin (

√
a c (x+ V t))

A1 sin (
√
a c (x+ V t))−A2 cos (

√
a c (x+ V t))

)2

(27)
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Family 2. If. c a < 0 ,

g (ξ) = − 2 c

2 c
√
|a c| ξ − ln

[
c
4 a

(
A1 e

2
√
|a c| ξ −A2

)2 ] (28)

and

g′

g2
=

1

2c

[
2c
√
|a c| −

4
√
|a c|A1 e

2
√
|a c| ξ

A1 e
2
√
|a c| ξ −A2

]
(29)

,then the solution of Eq.(21) takes the form:

u (ξ) = −1

2

V − 1 + 8 b V c a

a
+
−6 b V c2

a

1

4 c2

([
2c
√
|a c| −

4
√
|a c|A1 e

2
√
|a c| ξ

A1 e
2
√
|a c| ξ −A2

])2

(30)
where ξ = x + V t . Consequently, the traveling wave solution for the nonlinear the Za-
kharov Kuznetsov BBM (ZKBBM) equation (1) take the form:

u2(x, t) =
V + 1− 8 b V c a

2 a
− 3 b V c2

2 a

([
2c
√
|a c| −

4
√
|a c|A1 e

2
√
|a c| (x+V t)

A1 e
2
√
|a c| (x+V t) −A2

])2

(31)

3.1.2. Modified (g′)- expansion method for the Zakharov Kuznetsov BBM
(ZKBBM) equation

Here, we use the (g′)- expansion method to find the traveling wave solutions of Eq.(21)
and by balancing the order of u′′ andu2 , we get m = 2 . Let us assume the solution of
Eq.(21) has the following form:

u (ξ) = a0 + a1
(
g′
)

+ a2
(
g′
)2
, (32)

Similarly, noting (g′)′ = a + b g′ + c (g′)2 , one substitutes the new form of u′ , u′′ andu2

into Eq.(21), collect all terms with same order of (g′) ,and set the coefficients of all powers

of
(
w
g

)m
to zeros. We will get a system of algebraic equations for a0 , a1 , a2 , C andV .

and after some algebraic calculations we have

C =
1

4

−1− 2V − V 2 + b6 V 2 − 8 b4 V 2 c a+ 16 b2 V 2 c2 a2

a
, a0 = −1

2

−1− V + b3 V + 8 b V c a

a
,

a1 = −6 b2 V c

a
, a2 = −6 b V c2

a
, (33)

Substituting Eq.(33) and the general solution of Eq.(16) into Eq.(32), then we find the
general solution of Eq(1) has the following families:

Family 3. If. ∆ = 4 a c− b2 > 0,

g (ξ) =
1

2 c

[
ln

(
1 + tan2(

1

2

√
∆ ξ)

)
− b ξ

]
(34)
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and

g′ (ξ) =
1

2 c

[√
∆ tan

(
1

2

√
∆ ξ

)
− b
]

(35)

,then the solution of Eq.(21) takes the form:

u (ξ) = −1

2

−1− V + b3 V + 8 b V c a

a
−6 b2 V c

a

1

2 c

[√
4 a c− b2 tan

(
1

2

√
4 a c− b2 ξ

)
− b
]
. . .

− 6 b V c2

a

1

4 c2

([√
4 a c− b2 tan

(
1

2

√
4 a c− b2 ξ

)
− b
])2

, (36)

where ξ = x + V t . Consequently, the traveling wave solution for the nonlinear the Za-
kharov Kuznetsov BBM (ZKBBM) equation (1) take the form:

u3(x, t) =
1 + V − b3 V − 8 b V c a

2 a
−3 b2 V

a

[√
4 a c− b2 tan

(
1

2

√
4 a c− b2 (x+ V t)

)
− b
]
. . .

− 6 b V c2

a

1

4 c2

([√
4 a c− b2 tan

(
1

2

√
4 a c− b2 (x+ V t)

)
− b
])2

, (37)

Family 4. If. ∆ = 4 a c− b2 < 0 ,

g (ξ) =
1

2 c

[
ln

(
tanh2

(
1

2

√
−∆ ξ

)
− 1

)
− b ξ

]
(38)

and

g′ (ξ) =
1

2 c

[√
−∆ tanh

(
1

2

√
−∆ ξ

)
+ b

]
(39)

,then the solution of Eq.(21) takes the form:

u (ξ) = −1

2

−1− V + b3 V + 8 b V c a

a
−6 b2 V c

a

1

2 c

[√
− (4 a c− b2) tanh

(
1

2

√
4 a c− b2 ξ

)
+ b

]
. . .

− 6 b V c2

a

1

4 c2

([√
− (4 a c− b2) tanh

(
1

2

√
4 a c− b2 ξ

)
+ b

])2

, (40)

where ξ = x + V t . Consequently, the traveling wave solution for the nonlinear the Za-
kharov Kuznetsov BBM (ZKBBM) equation (1) take the form:

u4(x, t) =
1 + V − b3 V − 8 b V c a

2 a
−3 b2 V

a

[√
− (4 a c− b2) tanh

(
1

2

√
4 a c− b2 (x+ V t)

)
+ b

]
. . .

− 6 b V c2

a

1

4 c2

([√
− (4 a c− b2) tanh

(
1

2

√
4 a c− b2 (x+ V t)

)
+ b

])2

, (41)
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3.1.3. Modified
(
w
g

)
- expansion method for the Zakharov Kuznetsov BBM

(ZKBBM) equation

Here, we use the direct method
(
w
g

)
-expansion method to find the traveling wave solutions

of Eq.(21) and by balancing the order of u′′ andu2 , we get m = 2 . Let us assume the
solution of Eq.(21) has the following form:

u (ξ) = a0 + a1

(
w

g

)
+ a2

(
w

g

)2

, (42)

we have the concrete form of u′ , u′′ andu2 ,then substitute them into Eq.(21), collect all

terms with same order of
(
w
g

)
, and set the coefficients of all powers of

(
w
g

)m
to zeros. We

will get a system of algebraic equations for a0, a1, a2, C andV and after some algebraic
calculations we have

C =
1

4

−V 2 − 2V − 1 + 16 b2 V 2 µ2 λ2

a
, a0 =

1

2

V + 1 + 8 b V µλ

a
, a1 = 0 , a2 =

−6 b V µ2

a
,

(43)
Substituting Eq.(43) and the general solution of Eq.(18) into Eq.(42), then we find the
general solution of Eq(1) has the following families:

Family 5. If. λ > 0 and µ > 0, in this family the solution of the coupled ordinary
differential equation (18) have the following:

(
w

g

)
=

√
λ
√
µ

A1
√
µ cosh

(√
λ
√
µ ξ
)

+A2

√
λ sinh

(√
λ
√
µ ξ
)

A1
√
µ sinh

(√
λ
√
µ ξ
)

+A2

√
λ cosh

(√
λ
√
µ ξ
)
 (44)

,then the solution of Eq.(21) takes the form:

u (ξ) =
1

2

V + 1 + 8 b V µλ

a
+
−6 b V µ2

a

λ

µ

A1
√
µ cosh

(√
λ
√
µ ξ
)

+A2

√
λ sinh

(√
λ
√
µ ξ
)

A1
√
µ sinh

(√
λ
√
µ ξ
)

+A2

√
λ cosh

(√
λ
√
µ ξ
)
2

,

(45)
where ξ = x+ V t . Consequently, the solitary wave solution of Eq.(1) takes the following
from:

u5(x, t) =
V + 1 + 8 b V µλ

2 a
. . .

+
−6 b V µλ

a

A1
√
µ cosh

(√
λ
√
µ (x+ V t)

)
+A2

√
λ sinh

(√
λ
√
µ (x+ V t)

)
A1
√
µ sinh

(√
λ
√
µ (x+ V t)

)
+A2

√
λ cosh

(√
λ
√
µ (x+ V t)

)
2

,

(46)
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Family 6. If. λ < 0 and µ < 0, in this family the solution of the coupled system
ordinary (18) have the following:(

w

g

)
=

√
−λ√
−µ

(
A1
√
−µ cosh

(√
−λ
√
−µ ξ

)
−A2

√
−λ sinh

(√
−λ
√
−µ ξ

)
A1
√
−µ sinh

(√
−λ
√
−µ ξ

)
+A2

√
−λ cosh

(√
−λ
√
−µ ξ

)) , (47)

,then the solution of Eq.(21) takes the form:

u (ξ) =
1

2

V + 1 + 8 b V µλ

a
+
−6 b V µ2

a

λ

µ

(
A1
√
−µ cosh

(√
−λ
√
−µ ξ

)
−A2

√
−λ sinh

(√
−λ
√
−µ ξ

)
A1
√
−µ sinh

(√
−λ
√
−µ ξ

)
+A2

√
−λ cosh

(√
−λ
√
−µ ξ

))2

,

(48)
where ξ = x+ V t . Consequently, the solitary wave solution of Eq.(1) takes the following
from:

u6(x, t) =
V + 1 + 8 b V µλ

2 a
. . .

+
−6 b V µλ

a

(
A1
√
−µ cosh

(√
−λ
√
−µ (x+ V t)

)
−A2

√
−λ sinh

(√
−λ
√
−µ (x+ V t)

)
A1
√
−µ sinh

(√
−λ
√
−µ (x+ V t)

)
+A2

√
−λ cosh

(√
−λ
√
−µ (x+ V t)

))2

,

(49)

Family 7. If. λ > 0 and µ < 0 , in this family the solution of the coupled system
ordinary (18) have the following:

(
w

g

)
=

√
λ

−µ

 A1
√
−µ cos

(√
λ
√
−µ ξ

)
+A2

√
λ sin

(√
λ
√
−µ ξ

)
−A1
√
−µ sin

(√
λ−µ ξ

)
+A2

√
λ cos

(√
λ
√
−µ ξ

)
 , (50)

,then the solution of Eq.(21) takes the form:

u (ξ) =
1

2

V + 1 + 8 b V µλ

a
+
−6 b V µ2

a

λ

−µ

 A1
√
−µ cos

(√
λ
√
−µ ξ

)
+A2

√
λ sin

(√
λ
√
−µ ξ

)
−A1
√
−µ sin

(√
λ−µ ξ

)
+A2

√
λ cos

(√
λ
√
−µ ξ

)
2

,

(51)
where ξ = x+V t . Consequently, the periodic wave solution of Eq.(1) takes the following
from:

u7(x, t) =
V + 1 + 8 b V µλ

2 a
. . .

+
6 b V µλ

a

 A1
√
−µ cos

(√
λ
√
−µ (x+ V t)

)
+A2

√
λ sin

(√
λ
√
−µ (x+ V t)

)
−A1
√
−µ sin

(√
λ−µ (x+ V t)

)
+A2

√
λ cos

(√
λ
√
−µ (x+ V t)

)
2

,

(52)
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Family 8. If. λ < 0 and µ > 0 , in this family the solution of the coupled system
ordinary (18) have the following:(

w

g

)
=

√
−λ
√
µ

(
A1
√
µ cos

(√
−λ√µ ξ

)
−A2

√
−λ sin

(√
−λ√µ ξ

)
A1
√
µ sin

(√
−λ√µ ξ

)
+A2

√
−λ cos

(√
−λ√µ ξ

) ) , (53)

,then the solution of Eq.(21) takes the form:

u (ξ) =
1

2

V + 1 + 8 b V µλ

a
+
−6 b V µ2

a

−λ
µ

√
−λ
√
µ

(
A1
√
µ cos

(√
−λ√µ ξ

)
−A2

√
−λ sin

(√
−λ√µ ξ

)
A1
√
µ sin

(√
−λ√µ ξ

)
+A2

√
−λ cos

(√
−λ√µ ξ

) ) ,

(54)
where ξ = x+V t . Consequently, the periodic wave solution of Eq.(1) takes the following
from:

u8 (x, t) =
V + 1 + 8 b V µλ

2 a
. . .

+
6 b V µλ

a

√
−λ
√
µ

(
A1
√
µ cos

(√
−λ√µ (x+ V t)

)
−A2

√
−λ sin

(√
−λ√µ (x+ V t)

)
A1
√
µ sin

(√
−λ√µ (x+ V t)

)
+A2

√
−λ cos

(√
−λ√µ (x+ V t)

) ) ,

(55)
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3.1.4. Numerical solutions for the exact solutions for the Zakharov Kuznetsov
BBM (ZKBBM) equation

Here, we study the behavior of the traveling wave solutions which are given above subsec-
tions, according to some figures. Hence , we take some special values of the parameters to

show the behavior of extended rational
(
g′

gn

)
- expansion method, (g′)- expansion method

and
(
w
g

)
- expansion method for the Zakharov Kuznetsov BBM (ZKBBM) equation

Figure 1: The plot of the solution(27)when a = 0.3 , c =
0.1 , A1 = 0.3 , A2 = 0.4 , V = 0.1 , b = −0.1

Figure 2: The plot of the solution(31)when a = 0.3, c =
−0.2, A1 = 0.1, A2 = 0.7, V = 0.1, b = 0.1

Figure 3: The plot of the solution(37)when a = 0.3, c =
−0.2, V = 0.1, b = 0.

Figure 4: The plot of the solution(41)when a = 0.3, c =
−0.2, V = 0.1, b = 0.1.
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Figure 5: The plot of the solution(46)when λ = 0.3, µ =
−0.2, A1 = 0.1, A2 = 0.7, V = 0.1, b = 0.1.

Figure 6: The plot of the solution(49)when λ =
−0.3, µ = −0.2, A1 = 0.9, A2 = −0.9, V = 0.7, b =
−0.1.

Figure 7: The plot of the solution(52)when λ = 0.4, µ =
−0.2, A1 = 0.1, A2 = −0.4, V = 0.3, b = −0.1.

Figure 8: The plot of the solution(55)when λ =
−0.3, µ = 0.2, A1 = −0.1, A2 = −0.4, V = −0.3, b =
0.1.

3.2. Traveling wave solutions of the Boussinesq equation

Here, we discuss the traveling wave solution of the nonlinear the Boussinesq equation
(2). We use the transformation

u (x, t) = u (ξ) , ξ = x− V t , (56)

where V is a constant to be determined later. Converting Eq.(2) into an ODE for u(ξ)
by using Eq.(56),we have (

V 2 − 1
)
u′′ −

(
u2
)′′

+ u′′′′ = 0 (57)
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Integrating Eq.(57) twice with respect to ξ and taking the constant of integration as zero,
we obtain (

V 2 − 1
)
u− u2 + u′′ = 0 . (58)

3.2.1. Modified
(
g′

gn

)
- expansion method for the Boussinesq equation

Here, we use the direct method
(
g′

gn

)
-expansion method when n = 2 to find the traveling

wave solutions of Eq.(58) and by balancing the order of u′′ andu2 , we get m = 2 . Let us
assume the solution of Eq.(58) has the following form:

u (ξ) = a0 + a1

(
g′

g2

)
+ a2

(
g′

g2

)2

, (59)

Noting
(
g′

g2

)′
= a + c

(
g′

g2

)2
, we have the concrete form of u′ , u′′ andu2 , then substi-

tute them into Eq.(58), collect all terms with same order of
(
g′

g2

)
, and set the coeffi-

cients of all powers of
(
w
g

)m
to zeros. We will get a system of algebraic equations for

a0, a1, a2, C andV . and after some algebraic calculations we have

V = ±
√

1 + 4 c a , a0 = −2 c a , a1 = 0 , a2 = −6 c2 (60)

Substituting Eq.(60) and the general solution of Eq.(14) into Eq.(59), then we find the
general solution of Eq(2) has the following families:

Family 1. If. c a > 0 ,

g (ξ) =
2 c

ln
[
c
a (A1 sin (

√
a c ξ)−A2 cos (

√
ac ξ))

2
] , (61)

and
g′

g2
=

√
a

c

[
A1 cos (

√
a c ξ) +A2 sin (

√
a c ξ)

A1 sin (
√
a c ξ)−A2 cos (

√
ac ξ)

]
. (62)

,then the solution of Eq.(58) takes the form:

u (ξ) = −2 c a− 6 c2
a

c

(
A1 cos (

√
a c ξ) +A2 sin (

√
a c ξ)

A1 sin (
√
a c ξ)−A2 cos (

√
ac ξ)

)2

. (63)

where ξ = x ±
√

1 + 4 c a t. Consequently, the traveling wave solution for the nonlinear
the Boussinesq equation (2) take the form:

u1 (x, t) = −2 c a−6 c a

(
A1 cos

(√
a c
(
x±
√

1 + 4 c a
))

+A2 sin
(√
a c
(
x±
√

1 + 4 c a
))

A1 sin
(√
a c
(
x±
√

1 + 4 c a
))
−A2 cos

(√
ac
(
x±
√

1 + 4 c a
)) )2

.

(64)
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Family 2. If. c a < 0 ,

g (ξ) = − 2 c

2 c
√
|a c| ξ − ln

[
c
4 a

(
A1 e

2
√
|a c| ξ −A2

)2 ] (65)

and

g′

g2
=

1

2c

[
2c
√
|a c| −

4
√
|a c|A1 e

2
√
|a c| ξ

A1 e
2
√
|a c| ξ −A2

]
(66)

,then the solution of Eq.(58) takes the form:

u (ξ) = −2 c a− 6 c2
1

4 c2

([
2c
√
|a c| −

4
√
|a c|A1 e

2
√
|a c| ξ

A1 e
2
√
|a c| ξ −A2

])2

, (67)

where ξ = x±
√

1 + 4 c a t .
Consequently, the traveling wave solution for the nonlinear the Boussinesq equation

(2) take the form:

u2 (x, t) = −2 c a− 3

2
a

(
2c
√
|a c| −

4
√
|ac|A1e

2
√
|ac|(x±

√
1+4act)

A1e
2
√
|ac|(x±

√
1+4act) −A2

)2

(68)

3.2.2. Modified (g′) -expansion method for the Boussinesq equation

Here, we use the (g′)- expansion method to find the traveling wave solutions of Eq.(58)
and by balancing the order of u′′ andu2 , we get m = 2 . Let us assume the solution of
Eq.(58) has the following form:

u (ξ) = a0 + a1
(
g′
)

+ a2
(
g′
)2
, (69)

Similarly, noting (g′)′ = a + b g′ + c (g′)2 , one substitutes the new form of u′ , u′′ andu2

into Eq.(58), collect all terms with same order of (g′) ,and set the coefficients of all powers

of
(
w
g

)m
to zeros. We will get a system of algebraic equations for a0 , a1 , a2 , C andV .

and after some algebraic calculations we have

V = ±
√

4ca− b2 + 1 , a0 = −2 c a− b2 , a1 = −6 b c , a2 = −6c2 , (70)

Substituting Eq.(70) and the general solution of Eq.(16) into Eq.(69), then we find the
general solution of Eq(2) has the following families:

Family 3. If. ∆ = 4 a c− b2 > 0,

g (ξ) =
1

2 c

[
ln

(
1 + tan2

(
1

2

√
∆ ξ

))
− b ξ

]
(71)
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and

g′ (ξ) =
1

2 c

[√
∆ tan

(
1

2

√
∆ ξ

)
− b
]

(72)

,then the solution of Eq.(58) takes the form:

u (ξ) = 2 c a− b2 − 6 b c
1

2 c

[√
4 a c− b2 tan

(
1

2

√
4 a c− b2 ξ

)
− b
]
. . .

− 6 c2
1

4 c2

([√
4 a c− b2 tan

(
1

2

√
4 a c− b2 ξ

)
− b
])2

, (73)

Where ξ = x ±
√

4 c a− b2 + 1 t
Consequently, the traveling wave solution for the nonlinear the Boussinesq equation

(2) take the form:

u3 (x, t) = −2 c a−b2−3 b

[√
4 a c− b2 tan

(
1

2

√
4 a c− b2

(
x ±

√
4 c a− b2 + 1

))
− b
]
. . .

− 3

2

([√
4 a c− b2 tan

(
1

2

√
4 a c− b2

(
x ±

√
4 c a− b2 + 1

))
− b
])2

, (74)

Family 4. If. ∆ = 4 a c− b2 < 0 ,

g (ξ) =
1

2 c

[
ln

(
tanh2

(
1

2

√
−∆ ξ

)
− 1

)
− b ξ

]
(75)

and

g′ (ξ) =
1

2 c

[√
−∆ tanh

(
1

2

√
−∆ ξ

)
+ b

]
(76)

,then the solution of Eq.(58) takes the form:

u (ξ) = −2 c a− b2 − 6 b c
1

2c

[√
− (4 a c− b2) tanh

(
1

2

√
4 a c− b2 ξ

)
+ b

]
− 6c2

1

4 c2

([√
− (4 a c− b2) tanh

(
1

2

√
4 a c− b2 ξ

)
+ b

])2

, (77)

Where ξ = x±
√

4 c a− b2 + 1 t Consequently, the traveling wave solution for the nonlinear
the Boussinesq equation (2) take the form:

u4 (x, t) = −2 c a− b2 − 3 b

[√
− (4 a c− b2) tanh

(
1

2

√
4 a c− b2 ξ

)
+ b

]
− 3

2

([√
− (4 a c− b2) tanh

(
1

2

√
4 a c− b2 ξ

)
+ b

])2

, (78)
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3.2.3. Modified
(
w
g

)
- expansion method for the Boussinesq equation

Here, we use the direct method
(
w
g

)
-expansion method to find the traveling wave solutions

of Eq.(58) and by balancing the order of u′′ andu2 , we get m = 2 . Let us assume the
solution of Eq.(58) has the following form:

u (ξ) = a0 + a1

(
w

g

)
+ a2

(
w

g

)2

, (79)

we have the concrete form of u′ , u′′ andu2 ,then substitute them into Eq.(58), collect all

terms with same order of
(
w
g

)
, and set the coefficients of all powers of

(
w
g

)m
to zeros. We

will get a system of algebraic equations for a0, a1, a2, C andV and after some algebraic
calculations we have

V = ±
√

1− 4µλ , a0 = 2µλ , a1 = 0 , a2 = −6µ2 (80)

Substituting Eq.(80) and the general solution of Eq.(18) into Eq.(79), then we find the
general solution of Eq(2) has the following families:

Family 5. If. λ > 0 and µ > 0, in this family the solution of the coupled ordinary
differential equation (18) have the following:

(
w

g

)
=

√
λ
√
µ

A1
√
µ cosh

(√
λ
√
µ ξ
)

+A2

√
λ sinh

(√
λ
√
µ ξ
)

A1
√
µ sinh

(√
λ
√
µ ξ
)

+A2

√
λ cosh

(√
λ
√
µ ξ
)
 (81)

,then the solution of Eq.(58) takes the form:

u (ξ) = 2µλ− 6µ2
λ

µ

A1
√
µ cosh

(√
λ
√
µ ξ
)

+A2

√
λ sinh

(√
λ
√
µ ξ
)

A1
√
µ sinh

(√
λ
√
µ ξ
)

+A2

√
λ cosh

(√
λ
√
µ ξ
)
2

, (82)

where ξ = x±
√

1− 4µλ t .
Consequently, the solitary wave solution of Eq.(2) takes the following from:

u5 (x, t) = 2µλ−6µλ

A1
√
µ cosh

(√
λ
√
µ
(
x±
√

1− 4µλ
))

+A2

√
λ sinh

(√
λ
√
µ
(
x±
√

1− 4µλ
))

A1
√
µ sinh

(√
λ
√
µ
(
x±
√

1− 4µλ
))

+A2

√
λ cosh

(√
λ
√
µ
(
x±
√

1− 4µλ
))
2

,

(83)
Family 6. If. λ < 0 and µ < 0, in this family the solution of the coupled system

ordinary (18) have the following:(
w

g

)
=

√
−λ√
−µ

(
A1
√
−µ cosh

(√
−λ
√
−µ ξ

)
−A2

√
−λ sinh

(√
−λ
√
−µ ξ

)
A1
√
−µ sinh

(√
−λ
√
−µ ξ

)
+A2

√
−λ cosh

(√
−λ
√
−µ ξ

)) , (84)
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,then the solution of Eq.(58) takes the form:

u (ξ) = 2µλ− 6µ2
λ

µ

(
A1
√
−µ cosh

(√
−λ
√
−µ ξ

)
−A2

√
−λ sinh

(√
−λ
√
−µ ξ

)
A1
√
−µ sinh

(√
−λ
√
−µ ξ

)
+A2

√
−λ cosh

(√
−λ
√
−µ ξ

))2

,

(85)
where ξ = x ±

√
1− 4µλ t . Consequently, the solitary wave solution of Eq.(2) takes the

following from:

u6(x, t) = 2µλ . . .

−6µλ

(
A1
√
−µ cosh

(√
−λ
√
−µ

(
x±
√

1− 4µλ t
))
−A2

√
−λ sinh

(√
−λ
√
−µ

(
x±
√

1− 4µλ t
))

A1
√
−µ sinh

(√
−λ
√
−µ

(
x±
√

1− 4µλ t
))

+A2

√
−λ cosh

(√
−λ
√
−µ

(
x±
√

1− 4µλ t
)))2

,

(86)

Family 7. If. λ > 0 and µ < 0 , in this family the solution of the coupled system
ordinary (18) have the following:

(
w

g

)
=

√
λ

−µ

 A1
√
−µ cos

(√
λ
√
−µ ξ

)
+A2

√
λ sin

(√
λ
√
−µ ξ

)
−A1
√
−µ sin

(√
λ−µ ξ

)
+A2

√
λ cos

(√
λ
√
−µ ξ

)
 , (87)

,then the solution of Eq.(58) takes the form:

u (ξ) = 2µλ− 6µ2
λ

−µ

 A1
√
−µ cos

(√
λ
√
−µ ξ

)
+A2

√
λ sin

(√
λ
√
−µ ξ

)
−A1
√
−µ sin

(√
λ−µ ξ

)
+A2

√
λ cos

(√
λ
√
−µ ξ

)
2

, (88)

where ξ = x ±
√

1− 4µλ t . Consequently, the solitary wave solution of Eq.(2) takes the
following from:

u7(x, t) = 2λµ+6µλ

 A1
√
−µ cos

(√
λ
√
−µ

(
x±
√

1− 4µλ t
))

+A2

√
λ sin

(√
λ
√
−µ

(
x±
√

1− 4µλ t
))

−A1
√
−µ sin

(√
λ−µ

(
x±
√

1− 4µλ t
))

+A2

√
λ cos

(√
λ
√
−µ

(
x±
√

1− 4µλ t
))
2

,

(89)

Family 8. If. λ < 0 and µ > 0 , in this family the solution of the coupled system
ordinary (18) have the following:(

w

g

)
=

√
−λ
µ

(
A1
√
µ cos

(√
−λ√µ ξ

)
−A2

√
−λ sin

(√
−λ√µ ξ

)
A1
√
µ sin

(√
−λ√µ ξ

)
+A2

√
−λ cos

(√
−λ√µ ξ

) ) , (90)

,then the solution of Eq.(58) takes the form:

u (ξ) = 2µλ− 6µ2
−λ
µ

(
A1
√
µ cos

(√
−λ√µ ξ

)
−A2

√
−λ sin

(√
−λ√µ ξ

)
A1
√
µ sin

(√
−λ√µ ξ

)
+A2

√
−λ cos

(√
−λ√µ ξ

) )2

, (91)
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where ξ = x±
√

1− 4µλ, t . Consequently, the periodic wave solution of Eq.(2) takes the
following from:

u8 (x, t) = 2µλ+6µλ

(
A1
√
µ cos

(√
−λ√µ

(
x±
√

1− 4µλ t
))
−A2

√
−λ sin

(√
−λ√µ

(
x±
√

1− 4µλ t
))

A1
√
µ sin

(√
−λ√µ

(
x±
√

1− 4µλ t
))

+A2

√
−λ cos

(√
−λ√µ

(
x±
√

1− 4µλ t
)) )2

,

(92)

3.2.4. Numerical solutions for the exact solutions for the Boussinesq equation

Here, we study the behavior of the traveling wave solutions which are given above subsec-
tions, according to some figures. Hence , we take some special values of the parameters to

show the behavior of extended rational
(
g′

g2

)
-expansion method, (g′) -expansion method

and
(
w
g

)
-expansion method for the Boussinesq equation

Figure 9: The plot of the solution(64)when a = 0.3, c =
0.2, A1 = 0.1, A2 = 0.7.

Figure 10: The plot of the solution(68)when a =
0.2, c = −0.2, A1 = 0.1, A2 = 0.7.
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Figure 11: The plot of the solution(74)when a =
0.3, c = 0.2, A1 = 0.1, A2 = 0.7.

Figure 12: The plot of the solution(78)when a =
0.2, c = −0.2, A1 = 0.1, A2 = 0.7.

Figure 13: The plot of the solution(83) when λ =
0.3, µ = −0.2, A1 = 0.1, A2 = 0.7.

Figure 14: The plot of the solution(86) when λ =
−0.3, µ = −0.2, A1 = 0.1, A2 = 0.7.
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Figure 15: The plot of the solution(89) when λ =
0.3, µ = −0.2, A1 = −0.1, A2 = −0.7.

Figure 16: The plot of the solution(92) when λ =
−0.3, µ = 0.3, A1 = 0.1, A2 = −0.1.

4. Conclusion

In this work, we present new applications of the modified (wg ) -expansion method
to construct a series of some new traveling wave solutions for some nonlinear partial
differential equations, via the Zakharov Kuznetsov BBM (ZKBBM) equation and the
Boussinesq equation. The performance of this method is found to be effective, powerful
and reliable for solving the NPDEs. This method has the advantages of being direct and
concise. Also, we believe that this method can be applied widely to many other NPDEs
in the mathematical physics and this will be done in a future work.
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