

Some Classes of Analytic Functions With Respect To Symmetric Conjugate Points

K. R. Karthikeyan^{1,*}

¹ Department of Information Technology, Mathematics Section, Salalah College of Technology, Salalah, Sultanate of Oman.

Abstract. In this paper, the author introduces the notion of (2j, k)-symmetric conjugate functions. Several new classes of analytic functions with respect to (2j, k)-symmetric conjugate points are introduced. Inclusion relations, integral representation and conditions for starlikeness are the main results.

2010 Mathematics Subject Classifications: 30C45

Key Words and Phrases: univalent, analytic, (j, k)- symmetrical functions, (2j, k)-symmetric conjugate

1. Introduction, Definitions And Preliminaries

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad a_n \ge 0,$$
(1)

which are analytic in the open disc $\mathscr{U} = \{z \in \mathbb{C} \setminus |z| < 1\}$ and \mathscr{S} be the class of functions $f \in \mathscr{A}$ which are univalent in \mathscr{U} .

We denote by \mathscr{S}^* , \mathscr{C} , \mathscr{K} and \mathscr{C}^* the familiar subclasses of \mathscr{A} consisting of functions which are respectively starlike, convex, close-to-convex and quasi-convex in \mathscr{U} . Our favorite references of the field are [3, 4] which covers most of the topics in a lucid and economical style.

Let f(z) and g(z) be analytic in \mathcal{U} . Then we say that the function f(z) is subordinate to g(z) in \mathcal{U} , if there exists an analytic function w(z) in \mathcal{U} such that |w(z)| < |z| and f(z) = g(w(z)), denoted by $f(z) \prec g(z)$. If g(z) is univalent in \mathcal{U} , then the subordination is equivalent to f(0) = g(0) and $f(\mathcal{U}) \subset g(\mathcal{U})$.

http://www.ejmathsci.com

© 2013 EJMATHSCI All rights reserved.

^{*}Corresponding author.

Email address: kr_karthikeyan1979@yahoo.com

A function $f(z) \in \mathcal{A}$ is in the class $\mathcal{S}_s^k(\phi)$ if and only if it satisfies the condition

$$rac{zf^{'}(z)}{f_k(z)}\prec\phi(z),\quad(z\in\mathscr{U}),$$

where $\phi \in \mathcal{P}$, k is a fixed positive integer and $f_k(z)$ is defined by the following equality

$$f_k(z) = \frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon^{-\nu} f(\varepsilon^{-\nu} z) \qquad (\varepsilon = \exp(2\pi/k); z \in \mathscr{U}).$$
(2)

The class $\mathscr{S}_{s}^{k}(\phi)$ is called the class of functions starlike with respect to *k*-symmetric points. Similarly, a function $f \in \mathscr{A}$ is said to be in $\mathscr{C}_{s}^{k}(\phi)$ of functions convex with respect to *k*-symmetric points if and only if

$$\frac{\left(zf^{'}(z)\right)'}{f_{k}^{'}(z)} \prec \phi(z), \quad (z \in \mathscr{U}),$$

where $\phi \in \mathcal{P}$, *k* is a fixed positive integer and $f_k(z)$ is defined by the following equality (2). The classes $\mathscr{S}_s^k(\phi)$ and $\mathscr{C}_s^k(\phi)$ were introduced recently by Wang, Gao and Yuan in [7].

Let k be a positive integer and j = 0, 1, 2, ... (k - 1). A function $f \in \mathcal{A}$ is said to be (j, k)-symmetrical if for each $z \in \mathcal{U}$

$$f(\varepsilon z) = \varepsilon^{j} f(z), \tag{3}$$

where $\varepsilon = \exp(2\pi i/k)$. The family of (j, k)-symmetrical functions will be denoted by \mathscr{F}_k^j . We observe that $\mathscr{F}_2^1, \mathscr{F}_2^0$ and \mathscr{F}_k^1 are well-known families of odd functions, even functions and *k*-symmetrical functions respectively.

Also let $f_{i,k}(z)$ be defined by the following equality

$$f_{j,k}(z) = \frac{1}{k} \sum_{\nu=0}^{k-1} \frac{f(\varepsilon^{\nu} z)}{\varepsilon^{\nu j}}, \quad (f \in \mathscr{A}; k = 1, 2, ...; j = 0, 1, 2, ...(k-1)),$$
(4)

where v is an integer.

It is obvious that $f_{j,k}(z)$ is a linear operator from \mathcal{U} into \mathcal{U} . The notion of (j, k)-symmetric functions was introduced and studied by P. Liczberski and J. Połubiński in [5].

Al-Amiri, Coman and Mocanu in [1] introduced and investigated a class of functions starlike with respect to 2k-symmetric conjugate points, which satisfy the following inequality

$$Re\left\{\frac{zf'(z)}{f_{2k}(z)}\right\} > 0, \quad (z \in \mathscr{U}),$$

where k is a fixed positive integer and $f_{2k}(z)$ is defined by the following equality

$$f_{2k}(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} \left[\varepsilon^{-\nu} f(\varepsilon^{-\nu} z) + \varepsilon^{\nu} \overline{f(\varepsilon^{-\nu} \bar{z})} \right].$$
(5)

The class of such functions is denoted by \mathscr{S}_{sc}^k .

Now we introduce the concept of analytic functions with respect to 2jk-symmetric conjugate points. For fixed positive integers j and k, let $f_{2j,k}(z)$ be defined by the following equality

$$f_{2j,k}(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} \left[\varepsilon^{-\nu j} f(\varepsilon^{\nu} z) + \varepsilon^{\nu j} \overline{f(\varepsilon^{\nu} \bar{z})} \right], \quad (f \in \mathscr{A}).$$
(6)

If v is an integer, then the following identities follow directly from (6):

$$f_{2j,k}'(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} \left[\varepsilon^{-\nu j+\nu} f'(\varepsilon^{\nu} z) + \varepsilon^{\nu j-\nu} \overline{f'(\varepsilon^{\nu} \bar{z})} \right]$$

$$f_{2j,k}''(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} \left[\varepsilon^{-\nu j+2\nu} f''(\varepsilon^{\nu} z) + \varepsilon^{\nu j-2\nu} \overline{f''(\varepsilon^{\nu} \bar{z})} \right].$$
(7)

and

$$f_{2j,k}(\varepsilon^{\nu}z) = \varepsilon^{\nu j} f_{2j,k}(z), \quad f_{2j,k}(z) = f_{2j,k}(\overline{z}) f_{2j,k}^{'}(\varepsilon^{\nu}z) = \varepsilon^{\nu j - \nu} f_{2j,k}^{'}(z), \quad f_{2j,k}^{'}(\overline{z}) = \overline{f_{2j,k}^{'}(z)}$$
(8)

Motivated by \mathscr{S}_{sc}^k , we now introduce the following. A function $f \in \mathscr{A}$ is said to be in the class $\mathscr{S}_{sc}^{(j,k)}(\phi)$ if and only if it satisfies the condition

$$\frac{zf'(z)}{f_{2j,k}(z)} \prec \phi(z) \quad (z \in \mathscr{U}), \tag{9}$$

where $\phi(z) \in \mathscr{P}$, the class of functions with positive real part and $f_{2j,k}(z)$ is defined by the equality (6). We call the functions $f \in \mathscr{A}$ that satisfies the condition (9) to be starlike with respect to 2jk-symmetric points.

Similarly, let $\mathscr{C}_{sc}^{(j,k)}(\phi)$ denote the class of functions in \mathscr{S} satisfying the condition

$$\frac{\left(zf'(z)\right)'}{f_{2j,k}'(z)} \prec \phi(z), \tag{10}$$

$$(z \in \mathscr{U}; k = 1, 2, \dots; j = 0, 1, 2, \dots (k-1)),$$

where $\phi \in \mathscr{P}$.

Remark 1. The notion of (2j, k)-symmetric conjugate function is a generalization of the notion of even, odd and 2k-symmetric conjugate functions. For different choices of the parameters j, k and the function $\phi(z)$, the classes $\mathscr{S}_{sc}^{(j,k)}(\phi)$ and $\mathscr{C}_{sc}^{(j,k)}(\phi)$ reduces to various other well-known and new subclasses of analytic functions.

2. Main Results

Theorem 1. If $f \in \mathscr{S}_{sc}^{(j,k)}(\phi)$, then f is univalent in \mathscr{U} .

Proof. From the definition of $\mathscr{S}^{(j,k)}_{sc}(\phi)$,

$$Re\left(\frac{zf'(z)}{f_{2j,k}(z)}\right) > 0,\tag{11}$$

since $Re{\phi(z)} > 0$. If we replace z by $\varepsilon^{\nu} z$ in (11), then (11) will be of the form

$$Re\left\{\frac{\varepsilon^{\nu}zf'(\varepsilon^{\nu}z)}{f_{2j,k}(\varepsilon^{\nu}z)}\right\} > 0, \quad (z \in \mathscr{U}; \nu = 0, 1, 2, \dots, k-1).$$
(12)

From inequality (12), we have

$$Re\left\{\frac{\overline{\varepsilon^{v}\overline{z}}\overline{f'(\varepsilon^{v}\overline{z})}}{\overline{f_{2j,k}(\varepsilon^{v}\overline{z})}}\right\} > 0, \quad (z \in \mathscr{U}; v = 0, 1, 2, \dots, k-1).$$
(13)

Using the equality (8), the inequalities (12) and (13) can be rewritten as

$$Re\left\{\frac{\varepsilon^{\nu-\nu j}zf'(\varepsilon^{\nu}z)}{f_{2j,k}(z)}\right\} > 0, \quad (z \in \mathscr{U}; \nu = 0, 1, 2, \dots, k-1),$$
(14)

and

$$Re\left\{\frac{\varepsilon^{\nu j-\nu} z\overline{f'(\varepsilon^{\nu}\overline{z})}}{f_{2j,k}(z)}\right\} > 0, \quad (z \in \mathcal{U}; \nu = 0, 1, 2, \dots, k-1).$$
(15)

Adding the inequalities (14) and (15), we get

$$Re\left\{\frac{z\left[\varepsilon^{\nu-\nu j}f'(\varepsilon^{\nu}z)+\varepsilon^{\nu j-\nu}\overline{f'(\varepsilon^{\nu}\overline{z})}\right]}{f_{2j,k}(z)}\right\}>0, \quad (z\in\mathscr{U}; \nu=0, 1, 2, \dots, k-1).$$
(16)

Let v = 0, 1, 2, ..., k - 1 in (13) respectively and summing them, we get

$$Re\left\{\frac{z\left[\frac{1}{2k}\sum_{\nu=0}^{k-1}\left[\varepsilon^{-\nu j+\nu}f'(\varepsilon^{\nu}z)+\varepsilon^{\nu j-\nu}\overline{f'(\varepsilon^{\nu}\bar{z})}\right]\right]}{f_{2j,k}(z)}\right\}>0,\quad(z\in\mathscr{U}),$$

or equivalently,

$$Re\left(rac{zf_{2j,k}^{'}(z)}{f_{2j,k}(z)}
ight) > 0, \quad (z \in \mathscr{U}),$$

that is $f_{2j,k}(z) \in \mathscr{S}^*$. Using this together with the condition (11) shows the functions in $\mathscr{S}_{sc}^{(j,k)}(\phi)$ are close-to-convex in \mathscr{U} . It is well-known that the class of close-to-convex functions are univalent, hence functions which are starlike with respect to (2j, k)-symmetric points are univalent.

Using arguments similar to those detailed in Theorem 1, we can prove next theorem.

Theorem 2. If $f \in \mathscr{C}_{sc}^{(j,k)}(\phi)$, then $f_{2j,k}(z) \in \mathscr{C}$.

Remark 2. Using the condition (10) together with Theorem 2 shows the functions in $\mathscr{C}_{sc}^{(j,k)}$ are quasi-convex. It is well-known that the class of quasi-convex functions are univalent, hence functions which are convex with respect to (2j, k)-symmetric points are univalent.

Theorem 3. Let $f \in \mathscr{S}_{sc}^{(j,k)}(\phi)$, then we have

$$f_{2j,k}(z) = z \exp\left\{\frac{1}{2k} \sum_{\nu=0}^{k-1} \int_0^z \frac{1}{\zeta} \left[\phi\left(w(\varepsilon^{\nu}\zeta)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{\zeta})\right)} - 2\right] d\zeta\right\}$$
(17)

where $f_{2j,k}(z)$ defined by equality (6), w(z) is analytic in \mathcal{U} and w(0) = 0, |w(z)| < 1.

Proof. Let $f \in \mathscr{S}_{sc}^{(j,k)}(\phi)$, from the definition of $\mathscr{S}_{sc}^{(j,k)}(\phi)$, we have

$$\frac{zf'(z)}{f_{2j,k}(z)} = \phi(w(z)), \tag{18}$$

where w(z) is analytic in \mathscr{U} and w(0) = 0, |w(z)| < 1. Substituting z by $\varepsilon^{\nu} z$ in the equality (18) respectively ($\nu = 0, 1, 2, ..., k - 1, \varepsilon^k = 1$), we have

$$\frac{\varepsilon^{\nu} z f'(\varepsilon^{\nu} z)}{f_{2j,k}(\varepsilon^{\nu} z)} = \phi\left(w(\varepsilon^{\nu} z)\right).$$
(19)

On simple computation, we get

$$\frac{\overline{\varepsilon^{v}\overline{z}}\overline{f}'(\varepsilon^{v}\overline{z})}{\overline{f}_{2j,k}(\varepsilon^{v}\overline{z})} = \overline{\phi(w(\varepsilon^{v}\overline{z}))}.$$
(20)

Following the steps as in Theorem 1, we get

$$\frac{zf_{2jk}(z)}{f_{2j,k}(z)} = \frac{1}{2k} \sum_{\nu=0}^{k-1} \left[\phi\left(w(\varepsilon^{\nu}z)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{z})\right)} \right],$$
(21)

which can be rewritten as

$$\frac{f_{2jk}(z)}{f_{2j,k}(z)} - \frac{1}{z} = \frac{1}{2k} \sum_{\nu=0}^{k-1} \frac{1}{z} \left[\phi\left(w(\varepsilon^{\nu}z)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{z})\right)} - 2 \right].$$
(22)

Integrating the equality (22), we have

$$\log\left\{\frac{f_{2j,k}(z)}{z}\right\} = \frac{1}{2k} \sum_{\nu=0}^{k-1} \int_0^z \frac{1}{\zeta} \left[\phi\left(w(\varepsilon^{\nu}\zeta)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{\zeta})\right)} - 2\right] d\zeta,$$
(23)

or equivalently

$$f_{2j,k}(z) = z \exp\left\{\frac{1}{2k} \sum_{\nu=0}^{k-1} \int_0^z \frac{1}{\zeta} \left[\phi\left(w(\varepsilon^{\nu}\zeta)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{\zeta})\right)} - 2\right] d\zeta\right\}.$$

This completes the proof of Theorem 3.

Theorem 4. Let $f \in \mathscr{C}_{sc}^{(j,k)}(\phi)$, then we have

$$f_{2j,k}(z) = \int_0^z \exp\left\{\frac{1}{2k} \sum_{\nu=0}^{k-1} \int_0^{\xi} \frac{1}{\zeta} \left[\phi\left(w(\varepsilon^{\nu}\zeta)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{\zeta})\right)} - 2\right] d\zeta\right\} d\xi$$
(24)

where $f_{2j,k}(z)$ defined by equality (6), w(z) is analytic in \mathcal{U} and w(0) = 0, |w(z)| < 1.

3. Conditions for starlikeness with respect to Symmetric points

We now state the following result which will be used in the sequel.

Lemma 1. [6, 2] Let the function q be univalent in the open unit disc \mathscr{U} and θ and ϕ be analytic in a domain D containing $q(\mathscr{U})$ with $\phi(w) \neq 0$ when $w \in q(\mathscr{U})$. set $Q(z) = zq'(z)\phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$. Suppose that

1. Q is starlike univalent in \mathcal{U} , and

2.
$$Re\left(\frac{zh'(z)}{Q(z)}\right) > 0$$
 for $z \in \mathscr{U}$.
If
 $\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)),$
(25)

then $p(z) \prec q(z)$ and q is the best dominant.

Theorem 5. Let the function g(z) be convex univalent in \mathcal{U} and also let

$$Re\left\{\alpha\left(\frac{g(z)}{zg'(z)}(g(z)-1)+1\right)+\beta\frac{g(z)}{zg'(z)}\right\}>0$$
(26)

and

$$h(z) = \alpha z g'(z) + \alpha g^2(z) + (\beta - \alpha)g(z),$$

where $\alpha > 0$, $\alpha + \beta > 0$. If $f \in \mathscr{A}$ with $\frac{f_{2j,k}(z)}{z} \neq 0$ satisfies the condition

$$\alpha \left\{ \frac{z^2 f''(z)}{f_{2j,k}(z)} - \frac{z^2 f'(z) f_{j,k}'(z)}{\left(f_{2j,k}(z)\right)^2} + \frac{z^2 \left(f'(z)\right)^2}{\left(f_{2j,k}(z)\right)^2} \right\} + \beta \frac{z f'(z)}{f_{2j,k}(z)} \prec h(z),$$
(27)

then $f \in \mathscr{S}_{sc}^{(j,k)}(g)$ and g is the best dominant.

Proof. Let the function p be defined by

$$p(z) = \frac{zf'(z)}{f_{2j,k}(z)} \qquad (z \in \mathscr{U}; z \neq 0; f \in \mathscr{A}),$$

$$(28)$$

where $p(z) = 1 + p_1 z + p_2 z^2 + \dots \in \mathscr{P}$. By a straight forward computation, we have

$$zp^{'}(z) = rac{zf^{'}(z)}{f_{2j,k}(z)} + rac{z^{2}f^{''}(z)}{f_{2j,k}(z)} - rac{z^{2}f^{'}(z)f^{'}_{j,k}(z)}{\left(f_{2j,k}(z)
ight)^{2}}.$$

Thus by (27), we have

$$\alpha z p'(z) + \alpha p^2(z) + (\beta - \alpha) p(z) \prec h(z).$$
⁽²⁹⁾

By setting

$$\theta(w) := \alpha w^2 + (\beta - \alpha) w \quad \text{and} \quad \phi(w) := \alpha,$$
(30)

it can be easily verified that θ is analytic in \mathbb{C} , ϕ is analytic in \mathbb{C} with $\phi(0) \neq 0$ in the *w*-plane. Also, by letting

$$Q(z) = zg'(z)\phi(g(z)) = \alpha zg'(z)$$
 (31)

and

$$h(z) = \theta(g(z)) + Q(z) = \alpha(g(z))^{2} + (\beta - \alpha)g(z) + \alpha z g'(z).$$
(32)

Since g(z) is convex univalent in \mathcal{U} it implies that Q(z) is starlike univalent in \mathcal{U} . Further, we have

$$Re\frac{zh'(z)}{Q(z)} = Re\left\{\alpha\left(\frac{g(z)}{zg'(z)}(g(z)-1)+1\right) + \beta\frac{g(z)}{zg'(z)}\right\} > 0.$$

The assertion of the Theorem 5 now follows by application of Lemma 1.

174

Corollary 1. If $f \in \mathscr{A}$ with $\frac{f_{2j,k}(z)}{z} \neq 0$ satisfies the condition

$$\alpha \left\{ \frac{z^2 f^{''}(z)}{f_{2j,k}(z)} - \frac{z^2 f^{'}(z) f^{'}_{j,k}(z)}{\left(f_{2j,k}(z)\right)^2} + \frac{z^2 \left(f^{'}(z)\right)^2}{\left(f_{2j,k}(z)\right)^2} \right\} + \beta \frac{z f^{'}(z)}{f_{2j,k}(z)} \prec h(z),$$

where

$$h(z) = \frac{a[\alpha(a-b) + \beta b]z^2 + [2\alpha(a-b) + \beta(a+b)]z + \beta}{(1+bz)^2},$$

-1 \le b < a \le 1

and

$$\beta \ge 2\alpha^2 \left(\frac{\mid b \mid}{1+\mid b \mid} - \frac{1-a}{1-b} \right)$$

then $f \in \mathscr{S}_{sc}^{(j,k)}\left(\frac{1+az}{1+bz}\right)$.

Proof. We let $g(z) = \frac{1+az}{1+bz}$, in Theorem 5. Clearly g(z) is convex univalent in \mathcal{U} . Hence the proof of the Corollary follows from Theorem 5.

Corollary 2. If $f \in \mathscr{A}$ with $\frac{f_{2j,k}(z)}{z} \neq 0, z \in \mathscr{U}$ and

$$D = \mathbb{C} \setminus \left\{ z \in \mathbb{C} : \operatorname{Re} z \leq -\frac{1}{2}, \operatorname{Im} z = 0 \right\},\$$

then

$$\frac{z^{2}f^{''}(z)}{f_{2j,k}(z)} - \frac{z^{2}f^{'}(z)f^{'}_{j,k}(z)}{\left(f_{2j,k}(z)\right)^{2}} + \frac{z^{2}\left(f^{'}(z)\right)^{2}}{\left(f_{2j,k}(z)\right)^{2}} + \frac{zf^{'}(z)}{f_{2j,k}(z)} \in D \quad \Longrightarrow f \in \mathscr{S}_{sc}^{(j,k)}.$$

Proof. If we let $\alpha = 1$, $\beta = 1$ and $g(z) = \frac{1+z}{1-z}$, in Theorem 5. It follows that h(z) is convex with respect to the point u = -1/2. Hence the proof of the Corollary.

Corollary 3. If $f \in \mathscr{A}$ with $\frac{f_{2j,k}(z)}{z} \neq 0, z \in \mathscr{U}$, satisfy the condition

$$\Phi_{k}^{j}(z) = \alpha \left\{ \frac{z^{2}f^{''}(z)}{f_{2j,k}(z)} - \frac{z^{2}f^{'}(z)f_{j,k}^{'}(z)}{\left(f_{2j,k}(z)\right)^{2}} + \frac{z^{2}\left(f^{'}(z)\right)^{2}}{\left(f_{2j,k}(z)\right)^{2}} \right\} + \frac{zf^{'}(z)}{f_{2j,k}(z)} \prec 1 + \delta z,$$

where $\delta = \mu(2\alpha + 1 - \alpha\mu)$ and $0 < \mu \le \left(1 + \frac{1}{2\alpha}\right)$. Then

$$\frac{zf'(z)}{f_{2j,k}(z)} \prec 1 + \mu z.$$

Proof. If we let $\beta = 1$ and $g(z) = 1 + \mu z$ in Theorem 5. Then h(z) will be of the form $h(z) = 1 + (2\alpha + 1)\mu z + \alpha \mu^2 z^2$. For |z| = 1,

$$|h(z) - 1| = \mu \left| 2\alpha + 1 + \alpha \mu z \right| \ge \mu \left(2\alpha + 1 - \alpha \mu \right)$$

If we put $\delta = (2\alpha + 1 - \alpha\mu)$, then from the above inequality it follows that h(z) is superordinate to $1 + \delta z$. Hence the proof of the Corollary.

If we let $\alpha = 1$ and $\mu = 1$ in the Corollary 3, then we have the following result.

Corollary 4. If $f \in \mathscr{A}$ with $\frac{f_{2j,k}(z)}{z} \neq 0, z \in \mathscr{U}$, then

$$\left|\frac{zf'(z)}{f_{2j,k}(z)}\left(1+\frac{f''(z)}{f'(z)}-\frac{zf'_{j,k}(z)}{f_{2j,k}(z)}+\frac{zf'(z)}{f_{2j,k}(z)}\right)-1\right|<2\quad (z\in\mathscr{U})$$

implies $\left|\frac{zf'(z)}{f_{2j,k}(z)} - 1\right| < 1$, for all $z \in \mathscr{U}$.

It is well-known that a function $f \in \mathcal{A}$ is called strongly-starlike of order λ , $0 < \lambda \leq 1$, if

$$\left|\arg\frac{zf'(z)}{f(z)}\right| < \lambda\frac{\pi}{2}, \quad (z \in \mathcal{U}),$$

and we denote by $\mathscr{SS}^*(\lambda)$ the class of such functions. Similarly, we denote the class of strongly-starlike functions of order λ with respect to (2j, k)-symmetric points by $\mathscr{SS}^{(j,k)}_{sc}(\lambda)$.

Now, we give the sufficient conditions for strongly-starlike of order λ with respect to (2j, k)-symmetric points

Corollary 5. Let $0 < \lambda < 1$, and let

$$h(z) = \left(\frac{1+z}{1-z}\right)^{\lambda} \left[\frac{2\lambda z}{1-z^2} + \left(\frac{1+z}{1-z}\right)^{\lambda}\right].$$

If $f \in \mathscr{A}$ with $\frac{f_{2j,k}(z)}{z} \neq 0, z \in \mathscr{U}$, satisfies the condition

$$\frac{z^2 f^{''}(z)}{f_{2j,k}(z)} - \frac{z^2 f^{'}(z) f^{'}_{j,k}(z)}{\left(f_{2j,k}(z)\right)^2} + \frac{z^2 \left(f^{'}(z)\right)^2}{\left(f_{2j,k}(z)\right)^2} + \frac{z f^{'}(z)}{f_{2j,k}(z)} \prec h(z)$$

then $f \in \mathscr{SS}_{sc}^{(j,k)}(\lambda)$.

References

- H. Al-Amiri, D. Coman and P. T. Mocanu. Some Properties of Starlike Functions with Respect to Symmetric-Conjugate Points, Internat. J. Math. Math. Sci. 18, 3, 469–474, 1995.
- [2] T. Bulboacã. *Differential subordinations and superordinations. Recent result*, House of Science Book Publ., Cluj-Napoca, 2005.
- [3] A. W. Goodman. Univalent functions. Vol. I, Mariner, Tampa, FL, 1983.
- [4] I. Graham and G. Kohr, *Geometric function theory in one and higher dimensions*, Dekker, New York, 2003.
- [5] P. Liczberski and J. Połubiński. On (j,k)-symmetrical functions, Math. Bohem. 120, 1, 13–28, 1995.
- [6] S. S. Miller and P. T. Mocanu. *Subordinants of differential superordinations*, Complex Var. Theory Appl. 48, 10, 815–826, 2003.
- [7] Z.-G. Wang, C.-Y. Gao and S.-M. Yuan. On certain subclasses of close-to-convex and quasiconvex functions with respect to k-symmetric points, J. Math. Anal. Appl. 322, 1, 97–106, 2006.