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1. Introduction

Differential equations play a central role in applications of mathematics to natural and

engineering sciences. In general, more realistic formulation of the differential equations aris-

ing in applied sciences (taking into account uncertainities and random noises associated with

the process considered) should involve stochastic differential equations. Recently, stochastic

differential equations have been widely accepted as an important mathematical tool in mod-

elling and analysis of numerous processes in engineering, especially in control and mechanical

systems. Today the theory of stochastic differential equation has a very extensive literature

dealing with both mathematical bases as well as applications.

Integrodifferential equations form a very rich class of equations. The study of integrodif-

ferential equations is relatively a new area in mathematics full of open problems that attracts

an increasing level of interest. Differential and integrodifferential equations, especially non-

linear, present the most effective way for describing complex processes. Most of the practical

systems are integrodifferential equations in nature and hence the study of integrodifferential

equations is very important. For instance, consider the longitudinal motion of a homogeneous

one dimensional body in viscoelasticity.

ρut t(t,ρ) + βut(t,ρ) = △u(t,ρ) +

∫ t

0

F(t − s)△u(s,ρ)ds+ f (t,ρ), t ≥ 0,
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u(0,ρ) = u0(ρ), ut(0,ρ) = u1(ρ). (1)

in L2(Ω), where u is the displacement, ρ is the density per unit area and β is the coefficient

of viscosity of the medium. As in [17], when density ρ→ 0, solutions of (1) will converge to

solutions of the limiting heat equation

βZt(t) = △Z(t) +

∫ t

0

F(t − s)△Z(s)ds+ f (t), t ≥ 0, Z(0) = Z0. (2)

The associated abstract integrodifferential equation is given by

dz

d t
= A
h

z(t) +

∫ t

0

F(t − s)z(s)ds
i

+ f (t), t ≥ 0, z(0) = z0, (3)

where A is a linear operator in a Hilbert space H and f is a real function. Practically, many

physical and biological models are represented by a class mixed Volterra-Fredholm integrod-

ifferential equations. The nonlinear mixed Volterra-Fredholm integrodifferential equations

serve as models for various partial differential equations and partial integrodifferential equa-

tions arising in heat flow in material with memory, viscoelasticity and reaction diffusion prob-

lems. Some authors have studied the existence, uniqueness and controllability of such non-

linear mixed integrodifferential equations in Banach spaces [19, 30]. Now, we can generalize

the above abstract form by imposing nonlinearity on f as used in [19, 30].

dz

d t
= A
h

z(t) +

∫ t

0

F(t − s)z(s)ds
i

+ f
�

t, x(t),

∫ t

0

k
�

t, s, x(s)
�

ds,

∫ a

0

h
�

t, s, x(s)
�

ds
�

, t ≥ 0, z(0) = z0. (4)

Grimmer [12] and Oka [20] obtained the representation of solutions of integrodifferential

equations (3) by using resolvent operators in Banach space. Ravikumar [22] derived the

nonlocal cauchy problem for analytic resolvent integrodifferential equations in Banach spaces.

Sakthivel et al. [25] discussed the existence and controllability result for semilinear evolution

integrodifferential systems. Pazy [21] discussed the existence and uniqueness of mild, strong

and classical solutions of semilinear evolution equations by employing semigroup method.

Sobolev-type equation appears in a variety of physical problems such as flow of fluid

through fissured rocks [8], thermodynamics, propagation of long waves of small amplitude

and shear in second order fluids and so on. Brill [2] and Showalter [24] established the ex-

istence of solutions of semilinear Sobolev type evolution equations in Banach space. There

is an extensive literature in which Sobolev type of equations are investigated, in the abstract

framework, see for instance [1, 4, 5, 7]. Controllability of Sobolev type integrodifferential sys-

tems in Banach spaces have been discussed in [3, 6]. Subsequently, Keck and Mckibben [14]

derived a Mckean-Vlasov stochastic integrodifferential evolution equation of Sobolev type.

Several authors have studied the existence and controllability of stochastic integrodifferential

systems with and without impulsive conditions [9, 15, 18, 27, 29].
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From the above literatures, it should be pointed out that there are several contributions

on the existence and controllability of Sobolev type integrodifferential equations using semi-

group method and the existence and controllability of integrodifferential equations with and

without randomness using resolvent operators. Upto now, there is no work reported on the

controllability of Sobolev-type neutral stochastic mixed integrodifferential system using resol-

vent operators. Motivated by this fact, in this paper, we make an attempt to fill this gap by

studying the controllability of Sobolev-type neutral stochastic mixed integrodifferential sys-

tems with nonlocal conditions using resolvent operators.

2. Preliminaries

Consider the following class of Sobolev-type neutral stochastic mixed Volterra-Fredholm

integrodifferential system with nonlocal conditions

d
h

Bx(t)− g(t, x(t))
i

= A
h

x(t) +

∫ t

0

F(t − s)x(s)ds
i

d t + Cu(t)d t

+ f
�

t, x(t),

∫ t

0

k
�

t, s, x(s)
�

ds,

∫ a

0

h
�

t, s, x(s)
�

ds
�

d t

+σ(t, x(t))dw(t), t ∈ J := [0, a],

x(0) + q(t1, t2, · · · , tp, x(t1), x(t2), · · · , x(tp)) = x0, (5)

where 0 < t1 < t2 < · · · < tp ≤ a (p ∈ N) and the state variable x(·) takes values in a real

separable Hilbert space H with innerproduct (·, ·) and norm ‖ · ‖. Here A and B are linear

operators on H and F(t), t ∈ J is a bounded operator on H. The control function u(·) takes

values in L2(J , U), a Banach space of admissible control functions for a separable Hilbert

space U and C is a bounded linear operator from U into H. Let K be another separable

Hilbert space with innerproduct (·, ·)K and the norm ‖ · ‖K . Suppose {w(t) : t ≥ 0} is a given

K-valued Wiener process with a finite trace nuclear covariance operator Q ≥ 0. We employ the

same notation ‖ · ‖ for the norm L (K , H), where L (K , H) denotes the space of all bounded

linear operators from K into H. Further, assume that g : J ×H → H, f : J ×H ×H ×H → H,

k : ∆× H → H, h : ∆× H → H, σ : J × H toLQ(K , H) are measurable mappings in H-norm

and LQ(K , H)-norm respectively. Here LQ(K , H) denotes the space of all Q-Hilbert-Schmidt

operators from K into H which will be defined in Section 2 and∆= {(t, s) ∈ J×J : s ≤ t}. The

nonlocal function q : C(J p×Hp, H)→ H is bounded and the initial data x0 is an F0-adapted,

H-valued random variable independent of Wiener process w.

Throughout the paper (H,‖ · ‖) and (K ,‖ · ‖K) denote real separable Hilbert spaces. Let

(Ω,F ,P;F) {F = {Ft}t≥0} be a complete filtered probability space satisfying that F0 contains

all P-null sets of F . An H-valued random variable is an F -measurable function x(t): Ω→H

and the collection of random variables S={x(t,ω) :Ω→H\t ∈ J} is called a stochastic process.

Generally, we just write x(t) instead of x(t,ω) and x(t) : J → H in the space of S. Let {ei}
∞
i=1

be a complete orthonormal basis of K . Suppose that {w(t) : t ≥ 0} is a cylindrical K-valued

wiener process with a finite trace nuclear covariance operator Q≥0, denote
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Tr(Q)=
∑∞

i=1λi=λ<∞, which satisfies that Qei=λiei. So, actually, w(t) =
∑∞

i=1

p

λiωi(t)ei ,

where {ωi(t)}
∞
i=1 are mutually independent one-dimensional standard Wiener processes. We

assume that Ft = σ{w(s) : 0 ≤ s ≤ t} is the σ-algebra generated by w and Fa = F . Let

Ψ ∈ L (K , H) and define

‖Ψ‖2Q = Tr(ΨQΨ∗)=

∞
∑

n=1

‖
p

λnΨen‖
2.

If ‖Ψ‖Q <∞, then Ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K , H) denote the space

of all Q-Hilbert-Schmidt operators Ψ : K → H. The completion LQ(K , H) of L (K , H) with

respect to the topology induced by the norm ‖ · ‖Q where ‖Ψ‖2Q = 〈Ψ,Ψ〉 is a Hilbert space

with the above norm topology. For more details refer to Da Prato [10].

The collection of all strongly measurable, square integrable H-valued random variables

denoted by L2(Ω,F , P; H) ≡L2(Ω, H), is a Banach space equipped with norm

‖x(·)‖L2
= (E‖x(·;ω)‖2H)

1

2 , where the expectation E is defined by E(h) =
∫

Ω
h(ω)dP. Sim-

ilarly, LF2 (Ω, H) denotes the Banach space of all Ft -measurable, square integrable random

variables, such that
∫

Ω
‖x(t, ·)‖2L2

d t <∞. C (J ,L2(Ω, H)) is the Banach space of all continu-

ous maps from J intoL2(Ω, H) satisfying the condition supt∈J E‖x(t)‖2 <∞. LetC (J ,L2) be

the closed subspace of all continuous process x that belong to the space C (J ,LF2 (Ω, H)) con-

sisting of Ft -adapted measurable processes x(t). Then C (J ,L2) is a Banach space endowed

with the norm

‖x‖2 = sup
t∈J

�

E‖x(t)‖2 : x ∈ C (J ,L2)
	

.

Now we consider the system (5) where the operators

A : D(A)⊂ H → H and B : D(B) ⊂ H → H satisfy the following hypotheses:

(E1) A and B are closed linear operators,

(E2) D(B) ⊂ D(A) and B is bijective,

(E3) B−1 : H → D(B) is continuous.

Here, (E1) and (E2) together with the Closed Graph Theorem imply the boundedness of the

linear operator AB−1 : H → H. Further, AB−1 generates a strongly continuous semigroup of

bounded linear operators in H. Let us denote ‖B−1‖2 = MB and ‖B‖2 = M̃B.

Here we recall some basic facts about resolvent operators and additional assumptions:

(E4) AB−1 generates a strongly continuous semigroup on H.

(E5) F(t) ∈ B(H), t ∈ J . Also, F(t) : Y → Y and for x(·) continuous in Y ,

AF(·)x(·) ∈ L1([0, a], H). For x ∈ H, F ′(t)x is continuous in t ∈ J , where B(H) is the

space of all bounded linear operators on H and Y is the Banach space formed from

D(A), the domain of A, endowed with the graph norm and AB−1F = FAB−1.
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Definition 1. A family of bounded linear operators R(t) ∈ B(H) for t ∈ J is called a resolvent

operator for

d x

d t
= A
h

x(t) +

∫ t

0

F(t − s)x(s)ds
i

(6)

if

(i) R(0) = I (the identity operator on H),

(ii) for all x ∈ H, R(t)x is continuous for t ∈ J,

(iii) R(t) ∈ B(Y ), t ∈ J. For y ∈ Y , R(t)y ∈ C1([0, a], H)∩ C([0, a], Y ) and

d

d t
R(t)y = AB−1

h

R(t)y +

∫ t

0

F(t − s)R(s)yds
i

= R(t)AB−1 y +

∫ t

0

R(t − s)AB−1F(s)yds, t ∈ J .

Here R(t) can be extracted from the semigroup operator of the generator AB−1.

Remark 1. If F = 0 in the system (5), then the resolvent and the semigroup operator of the

system generated by AB−1 are the same.

Definition 2. [11] A stochastic process x is said to be a mild solution of (5) if the following

conditions are satisfied:

(a) x(t,ω) is a measurable function from J ×Ω to H and x(t) is Ft -adapted for all t ∈ J,

(b) E‖x(t)‖2 <∞ for each t ∈ J,

(c) For each s ∈ [0, t) the function B−1R(t − s)AB−1 g(s, x(s)) is integrable and each

u ∈ LF2 (J , U) the process x satisfies the following integral equation:

x(t) = B−1R(t)[Bx0 − Bq
�

t1, · · · , tp, x(t1), · · · , x(tp)
�

− g(0, x(0))]+ B−1 g(t, x(t))

+

∫ t

0

B−1R(t − s)Cu(s)ds+

∫ t

0

B−1R(t − s)AB−1 g(s, x(s))ds

+

∫ t

0

B−1R(t − s)AB−1
h

∫ s

0

F(s−τ)g(τ, x(τ))dτ
i

ds

+

∫ t

0

B−1R(t − s) f
�

s, x(s),

∫ s

0

k
�

s,τ, x(τ)
�

dτ,

∫ a

0

h
�

s,τ, x(τ)
�

dτ
�

ds

+

∫ t

0

B−1R(t − s)σ(s, x(s))dw(s) for a.e. t ∈ J ,

x(0) + q
�

t1, t2, · · · , tp, x(t1), x(t2), · · · , x(tp)
�

= x0 ∈ H. (7)
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Definition 3. The system (5) is said to be controllable on the interval J, if for every initial

condition x0 and x1 ∈ H, there exists a control u ∈ L2(J , U) such that the solution x(·) of (5)

satisfies x(a) = x1.

It is known from the properties of resolvent operator discussed in [12], there exists a constant

M ≥ 1 and a real number w such that

‖R(t)‖ ≤ Mewt , t ∈ J .

We assume that ‖R(t)‖ is uniformly bounded by M . Before proceeding to the main result we

shall set forth a list of hypotheses:

(H1) AB−1 is the infinitesimal generator of a resolvent operator R(t) in H and there exist

constants M > 0 and MF > 0 such that

‖R(t)‖2 ≤ M , ‖F(t)‖2 ≤ MF , for all t ∈ J .

(H2) The linear operator W : L2(J , U)→ H defined by

Wu =

∫ a

0

B−1R(a− s)Cu(s)ds

is invertible with inverse operator W−1 taking values in L2(J , U)\kerW and there exist

positive constants MC , MW such that

‖C‖2 ≤ MC , ‖W−1‖2 ≤ MW .

(H3) (i) The nonlinear function g : J × H → H is continuous and there exist constants

Mg > 0, M̃g > 0 for t, s ∈ J and x , y ∈ H such that the function AB−1 g satisfies the

Lipschitz condition:

E‖AB−1 g(t, x)− AB−1 g(t, y)‖2 ≤ Mg‖x − y‖2

and M̃g = supt∈J ‖AB−1 g(t, 0)‖2.

(ii) There exist constants M1 > 0, M2 > 0 and M3 > 0 such that

E‖g(t, x)− g(s, y)‖2 ≤ M1

�

|t − s|2 + ‖x − y‖2
�

and

E‖g(t, x)‖2 ≤ M2‖x‖
2 +M3,

where M3 = supt∈J ‖g(t, 0)‖
2.

(H4) The nonlinear function f : J × H × H × H → H is continuous and there exist constants

M f > 0, M̃ f > 0 for t ∈ J and x1, x2, y1, y2, z1, z2 ∈ H such that

E‖ f (t, x1, y1, z1)− f (t, x2, y2, z2)‖
2 ≤ M f

h

‖x1− x2‖
2 + ‖y1 − y2‖

2+ ‖z1 − z2‖
2
i

and M̃ f = supt∈J ‖ f (t, 0,0,0)‖2.
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(H5) The function k : ∆× H → H is continuous and there exist positive constants Mk, M̃k,

for x , y ∈ H and (t, s) ∈∆ such that

E







∫ t

0

�

k(t, s, x)− k(t, s, y)
�

ds







2

≤ Mk‖x − y‖2

and M̃k = sup(t,s)∈∆ ‖
∫ t

0
k(t, s, 0)ds‖2.

(H6) The function h :∆×H → H is continuous and there exist positive constants Mh, M̃h, for

x , y ∈ H and (t, s) ∈∆ such that

E







∫ a

0

�

h(t, s, x)− h(t, s, y)
�

ds







2

≤ Mh‖x − y‖2

and M̃h = sup(t,s)∈∆ ‖
∫ a

0
h(t, s, 0)ds‖2.

(H7) The function σ : J × H → LQ(K , H) is continuous and there exist constants Mσ > 0,

M̃σ > 0 for t ∈ J and x , y ∈ H such that

E‖σ(t, x)−σ(t, y)‖2Q ≤ Mσ‖x − y‖2

and M̃σ = supt∈J ‖σ(t, 0)‖
2.

(H8) The nonlocal function q : C(J p × Hp, H) → H is continuous and there exist constants

Mq > 0, M̃q > 0 for x , y ∈ H such that

E‖q
�

t1, · · · , tp, x(t1), · · · , x(tp)
�

− q
�

t1, · · · , tp, y(t1), · · · , y(tp)
�

‖2 ≤ Mq‖x − y‖2,

E‖q
�

t1, t2, · · · , tp, x(t1), x(t2), · · · , x(tp)
�

‖2 ≤ M̃q.

(H9) There exists a constant r > 0 such that

9
n

MB M M̃B (‖x0‖
2 + M̃q) + 2MB M

�

M2(‖x0‖
2 + M̃q) +M3

�

+MB[M2r +M3]

+ 2a2MB M(1+aMF )[Mg r+M̃g]+a2MB M MCG+2aMB M Tr(Q)[Mσ r

+ M̃σ] + 2a2MB M
�

M f

�

(1+ 2Mk + 2Mh)r + 2(M̃k + M̃h)
�

+ M̃ f

�

o

≤ r

and δ = 8
�

(1+ 7a2MB M MC MW )(N1+ N2+ N3+ N4 + N5)
	

,

where N1 = MB M M̃B Mq,

N2 = MB M M1Mq +MB M1,

N3 = a2MB M Mg(1+ aMF ),

N4 = a2MB M M f (1+Mk +Mh),

N5 = aMB M Tr(Q)Mσ.
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3. Controllability Result

Theorem 1. If the conditions (H1)− (H9) are satisfied and if 0≤ δ < 1, then the system (5) is

controllable on J.

Proof: Using the hypothesis (H2) for an arbitrary function x(·), define the control

u(t)=W−1
h

x1−B−1R(a)
�

Bx0−Bq
�

t1, · · · , tp, x(t1), · · · , x(tp)
�

−g(0, x(0))
�

−B−1 g(a, x(a))

−

∫ a

0

B−1R(a− s)AB−1 g(s, x(s))ds−

∫ a

0

B−1R(a− s)AB−1
h

∫ s

0

F(s−τ)g(τ, x(τ))dτ
i

ds

−

∫ a

0

B−1R(a− s) f
�

s, x(s),

∫ s

0

k
�

s,τ, x(τ)
�

dτ,

∫ a

0

h
�

s,τ, x(τ)
�

dτ
�

ds

−

∫ a

0

B−1R(a− s)σ(s, x(s))dw(s)
i

(t). (8)

Let Yr be a nonempty closed subset of C (J ,L2) defined by

Yr = {x : x ∈ C (J ,L2)|E‖x(t)‖
2 ≤ r}.

Consider a mapping Ψ : Yr →Yr defined by

(Ψx)(t) = B−1R(t)
�

Bx0 − Bq
�

t1, · · · , tp, x(t1), · · · , x(tp)
�

− g(0, x(0))
�

+ B−1 g(t, x(t))

+

∫ t

0

B−1R(t − s)Cu(s)ds+

∫ t

0

B−1R(t − s)AB−1 g(s, x(s))ds

+

∫ t

0

B−1R(t − s)AB−1
h

∫ s

0

F(s−τ)g(τ, x(τ))dτ
i

ds

+

∫ t

0

B−1R(t − s) f
�

s, x(s),

∫ s

0

k
�

s,τ, x(τ)
�

dτ,

∫ a

0

h
�

s,τ, x(τ)
�

dτ
�

ds

+

∫ t

0

B−1R(t − s)σ(s, x(s))dw(s).

Since all the functions involved in the operator are continuous therefore Ψ is continuous.

From our assumptions we have

E‖ux(t)‖
2 ≤ 9MW

n

‖x1‖
2+MB M M̃B‖x0‖

2+MB M M̃B M̃q+2MB M
�

M2(‖x0‖
2+M̃q)+M3

�

+MB(M2r+M3)+2a2MB M(1+aMF )[Mg r+M̃g] + 2aMB M Tr(Q)[Mσ r

+M̃σ] + 2a2MB M
�

M f

�

(1+ 2Mk + 2Mh)r + 2(M̃k + M̃h)
�

+ M̃ f

�

o

:= G

and

E‖ux (t)− uy(t)‖
2 ≤ 7MW

n

MB M M̃B Mq+MB M M1Mq+MB M1+a2MB M Mg(1+aMF )
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+a2MB M M f (1+Mk +Mh) + aMB M Tr(Q)Mσ

o

‖x − y‖2.

We shall show that by using the above control the operator Ψ has a fixed point.

Step 1: The operator Ψ maps Yr into Yr .

E‖Ψx(t)‖2 ≤ 9
n

E‖B−1R(t)
�

Bx0 − Bq
�

t1, · · · , tp, x(t1), · · · , x(tp)
�

− g(0, x(0))
�

‖2

+E‖B−1 g(t, x(t))‖2 + E




∫ t

0

B−1R(t − s)AB−1 g(s, x(s))ds




2

+E




∫ t

0

B−1R(t − s)AB−1
h

∫ s

0

F(s−τ)g(τ, x(τ))dτ
i

ds




2

+E




∫ t

0

B−1R(t − s) f
�

s, x(s),

∫ s

0

k
�

s,τ, x(τ)
�

dτ,

∫ a

0

h
�

s,τ, x(τ)
�

dτ
�

ds




2

+E




∫ t

0

B−1R(t − s)Cu(s)ds




2
+ E




∫ t

0

B−1R(t − s)σ(s, x(s))dw(s)




2
o

≤ 9
n

MB M M̃B‖x0‖
2+MB M M̃B M̃q+2MBM

�

M2(‖x0‖
2+M̃q)+M3

�

+MB[M2r

+M3]+2a2MB M(1+aMF )[Mg r+M̃g]+a2MB M MCG+2aMBM Tr(Q)×

×[Mσr + M̃σ]+2a2MB M
�

M f

�

(1+2Mk+2Mh)r+2(M̃k+M̃h)
�

+M̃ f

�

o

.

From (H9) we obtain E‖(Ψx)(t)‖2 ≤ r. Hence Ψ maps Yr into itself.

Step 2: Ψ : Yr →Yr is a contraction mapping.

Let x , y ∈ Yr , then

E‖(Ψx)(t)− (Ψy)(t)‖2

≤ 8
n

E


B−1R(t)
�

Bx0 − g(0, x(0))− Bx0 + g(0, y(0))
�




2

+E


B−1R(t)[−Bq
�

t1, · · · , tp, x(t1), · · · , x(tp)
�

+ Bq
�

t1, · · · , tp, y(t1), · · · , y(tp)
��




2

+E


B−1
�

g(t, x(t))− g(t, y(t))
�




2
+ E




∫ t

0

B−1R(t − s)C
�

ux(s)− uy(s)
�

ds




2

+E




∫ t

0

B−1R(t − s)AB−1
�

g(s, x(s))− g(s, y(s))
�

ds




2

+E




∫ t

0

B−1R(t − s)AB−1
h

∫ s

0

F(s−τ)
�

g(τ, x(τ))− g(τ, y(τ))
�

dτ
i

ds




2

+E




∫ t

0

B−1R(t − s)
�

f
�

s, x(s),

∫ s

0

k
�

s,τ, x(τ)
�

dτ,

∫ a

0

h
�

s,τ, x(τ)
�

dτ
�

− f
�

s, y(s),

∫ s

0

k
�

s,τ, y(τ)
�

dτ,

∫ a

0

h
�

s,τ, y(τ)
�

dτ
��

ds




2
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+E




∫ t

0

B−1R(t − s)
�

σ(s, x(s))−σ(s, y(s))
�

dw(s)




2
o

≤ 8
�

(1+7a2MB M MC MW )
�

MB M M̃B Mq +MB M M1Mq + a2MB M Mg(1+aMF )

+MB M1 + a2MB M M f (1+Mk +Mh) + aMB M Tr(Q)Mσ
�	

‖x − y‖2

≤ 8
�

(1+ 7a2MB M MC MW )(N1+ N2+ N3 + N4+ N5)
	

‖x − y‖2

≤ δ‖x − y‖2.

Since δ < 1, the mapping Ψ is a contraction and hence by Banach fixed point theorem there

exists a unique fixed point x ∈ Yr such that (Ψx)(t) = x(t). This fixed point is then the

solution of the system (5) and clearly, x(a) = (Ψx)(a) = x1 which implies that the system (5)

is controllable on J .

Remark 2. Consider the following class of Sobolev-type neutral integrodifferential system

d
h

Bx(t)−Q
�

t, x(t),

∫ t

0

q(t, s, x(s))ds
�i

= A
h

x(t) +

∫ t

0

F(t − s)x(s)ds
i

d t + Cu(t)d t

+ f
�

t,x(t),

∫ t

0

k
�

t, s, x(s)
�

ds,

∫ a

0

h
�

t, s, x(s)
�

ds
�

d t

+G
�

t, x(t),

∫ t

0

σ(t, s, x(s))ds
�

dw(t), t ∈ J ,

x(0)+ g(x) = x0, (9)

where A, B, C , F, f , k,h are defined as before. Further,

Q : J ×H ×H → H, G : J ×H ×H →LQ(K , H),

q :∆×H → H, σ :∆×H → H, g : C(J , H)→ H

are measurable mappings in H-norm and LQ(K , H)-norm respectively. The solution of the

above equation is

x(t) = B−1R(t)[Bx0 − Bg(x)−Q(0, x(0), 0)]+ B−1Q
�

t, x(t),

∫ t

0

q(t, s, x(s))ds
�

+

∫ t

0

B−1R(t − s)Cu(s)ds+

∫ t

0

B−1R(t − s)AB−1Q
�

s, x(s),

∫ s

0

q(s,η, x(η))dη
�

ds

+

∫ t

0

B−1R(t − s)AB−1
h

∫ s

0

F(s−τ)Q
�

τ, x(τ),

∫ τ

0

q(τ,η, x(η))dη
�

dτ
i

ds

+

∫ t

0

B−1R(t − s) f
�

s, x(s),

∫ s

0

k
�

s,τ, x(τ)
�

dτ,

∫ a

0

h
�

s,τ, x(τ)
�

dτ
�

ds

+

∫ t

0

B−1R(t − s)G
�

s, x(s),

∫ s

0

σ(s,η, x(η))dη
�

dw(s) for a.e. t ∈ J . (10)

Concerning the operators Q,q, G,σ, g we assume the following hypotheses:
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(H10) (i) The function Q : J × H × H → H is continuous and there exist constants CQ > 0,

C̃Q > 0 for t, s ∈ J and x , y, x1, y1 ∈ H such that the function AB−1Q satisfies the

Lipschitz condition:

E‖AB−1[Q(t, x , x1)−Q(t, y, y1)]‖
2 ≤ CQ

�

‖x − y‖2 + ‖x1 − y1‖
2
�

and C̃Q = supt∈J ‖AB−1Q(t, 0,0)‖2.

(ii) There exist constants Q1 > 0,Q2 > 0 and Q3 > 0 such that

E‖Q(t, x , x1)−Q(s, y, y1)‖
2 ≤ Q1

�

|t − s|2 + ‖x − y‖2 + ‖x1 − y1‖
2
�

and

E‖Q(t, x , y)‖2 ≤ Q2

�

‖x‖2+ ‖y‖2
�

+Q3,

where Q3 = supt∈J ‖Q(t, 0,0)‖2.

(H11) The nonlinear function q : ∆× H → H is continuous and there exist positive constants

Cq, C̃q, for x , y ∈ H and (t, s) ∈∆ such that

E







∫ t

0

�

q(t, s, x)− q(t, s, y)
�

ds







2

≤ Cq‖x − y‖2

and C̃q = sup(t,s)∈∆ ‖
∫ t

0
q(t, s, 0)ds‖2.

(H12) The nonlinear function G : J×H×H →LQ(K , H) is continuous and there exist constants

CG > 0, C̃G > 0 for t ∈ J and x1, x2, y1, y2 ∈ H such that

E‖G(t, x1, y1)− G(t, x2, y2)‖
2 ≤ CG

�

‖x1− x2‖
2 + ‖y1 − y2‖

2
�

and C̃G = supt∈J ‖G(t, 0,0)‖2.

(H13) The nonlinear function σ : ∆× H → H is continuous and there exist positive constants

Cσ, C̃σ, for x , y ∈ H and (t, s) ∈∆ such that

E







∫ t

0

�

σ(t, s, x)−σ(t, s, y)
�

ds







2

≤Cσ‖x − y‖2

and C̃σ = sup(t,s)∈∆ ‖
∫ t

0
σ(t, s, 0)ds‖2.

(H14) The nonlocal function g : C(J , H)→ H is continuous and there exist constants Cg > 0,

C̃g > 0 for x , y ∈ H such that

E‖g(x)− g(y)‖2 ≤ Cg‖x − y‖2, E‖g(x)‖2 ≤ C̃g .

(H15) There exists a constant ρ > 0 such that

9
n

MB M M̃B

�

‖x0‖
2 + C̃g

�

+2MB M
�

Q2(‖x0‖
2 + C̃g) +Q3

�

+MB[Q2((1+ 2Cq)ρ+ 2C̃q)
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+ Q3] + 2a2MB M(1+aMF )[CQ((1+ 2Cq)ρ+ 2C̃q)+C̃Q]+a2MB M MCG

+ 2a2MB M
�

M f

�

(1+ 2Mk + 2Mh)ρ+ 2(M̃k + M̃h)
�

+ M̃ f

�

o

+ 2aMB M Tr(Q)[CG((1+ 2Cσ)ρ+ 2C̃σ) + C̃G]≤ ρ and

δ∗ = 8
�

(1+ 7a2MB M MC MW )(L1 + L2 + L3 + L4 + L5)
	

,

where L1 = MB M M̃BCg ,

L2 = MB MQ1Cg +MBQ1(1+Cq),

L3 = a2MB M(1+ aMF )CQ(1+Cq),

L4 = a2MB M M f (1+Mk +Mh),

L5 = aMB M Tr(Q)CG(1+Cσ).

Let Yρ be defined by Yρ = {x : x ∈ C (J ,L2)|E‖x(t)‖
2 ≤ ρ} and the operator Φ : Yρ → Yρ

is defined as

Φx(t) = B−1R(t)[Bx0 − Bg(x)−Q(0, x(0), 0)]+ B−1Q
�

t, x(t),

∫ t

0

q(t, s, x(s))ds
�

+

∫ t

0

B−1R(t − s)Cu(s)ds+

∫ t

0

B−1R(t − s)AB−1Q
�

s, x(s),

∫ s

0

q(s,η, x(η))dη
�

ds

+

∫ t

0

B−1R(t − s)AB−1
h

∫ s

0

F(s−τ)Q
�

τ, x(τ),

∫ τ

0

q(τ,η, x(η))dη
�

dτ
i

ds

+

∫ t

0

B−1R(t − s) f
�

s, x(s),

∫ s

0

k
�

s,τ, x(τ)
�

dτ,

∫ a

0

h
�

s,τ, x(τ)
�

dτ
�

ds

+

∫ t

0

B−1R(t − s)G
�

s, x(s),

∫ s

0

σ(s,η, x(η))dη
�

dw(s),

where

u(t)=W−1
h

x1−B−1R(a)
�

Bx0−Bg(x)−Q(0, x(0), 0)
�

−B−1Q
�

a, x(a),

∫ a

0

q(a, s, x(s))ds
�

−

∫ a

0

B−1R(a− s)AB−1Q
�

s, x(s),

∫ s

0

q(s,η, x(η))dη
�

ds

−

∫ a

0

B−1R(a− s)AB−1
h

∫ s

0

F(s−τ)Q
�

τ, x(τ),

∫ τ

0

q(τ,η, x(η))dη
�

dτ
i

ds

−

∫ a

0

B−1R(a− s) f
�

s, x(s),

∫ s

0

k
�

s,τ, x(τ)
�

dτ,

∫ a

0

h
�

s,τ, x(τ)
�

dτ
�

ds

−

∫ a

0

B−1R(a− s)G
�

s, x(s),

∫ s

0

σ(s,η, x(η))dη
�

dw(s)
i

(t).

Clearly the above control operator transfers the system (9) from the initial state x0 to the final
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state x1 provided that the operator Φx has a fixed point. Hence, if the operator Φx has a fixed

point then the system (9) is controllable.

Theorem 2. If the conditions (H1), (H2), (H4)− (H6), (H10)− (H15) hold, then the system

(9) is controllable provided

8
�

(1+ 7a2MB M MC MW )(L1+ L2 + L3 + L4 + L5)
	

< 1.

Proof. The proof of this theorem is similar to that of Theorem 1 and hence it is omitted.

4. Sobolev-Type Stochastic Neutral Impulsive Systems

The theory of impulsive differential equations in the field of modern applied mathematics

has made considerable headway in recent years, because the structure of its emergence has

deep physical background and realistic mathematical models. For the basic theory on impul-

sive differential equations refer to [16, 23]. Karthikeyan and Balachandran [13] studied the

controllability of nonlinear stochastic neutral impulsive systems. Sakthivel et al. [26] derived

the controllability of nonlinear impulsive stochastic systems. Subalakshmi and Balachandran

[28] discussed approximate controllability of nonlinear stochastic impulsive integrodifferen-

tial systems in Hilbert spaces. Moreover, the controllability of Sobolev type stochastic neutral

impulsive systems is an untreated topic in the literature sofar. Motivated by this fact, in this

section we study the controllability of Sobolev type stochastic neutral impulsive mixed inte-

grodifferential systems with nonlocal conditions of the form

d
�

Bx(t)− g(t, x(t))
�

=
h

A[x(t)− g(t, x(t))] + f
�

t, x(t),

∫ t

0

k
�

t, s, x(s)
�

ds,

∫ a

0

h
�

t, s, x(s)
�

ds
�

+Cu(t)
i

d t +σ(t, x(t))dw(t), t 6= tk, t ∈ J := [0, a],

△x(tk) = x(t+
k
)− x(t−

k
) = Ik(x(t

−
k
)), k = 1,2, · · · , m,

x(0)+H(x) = x0, (11)

where A, B, C , f , g, k,h,σ are defined as in Section 2. Also, from Remark 2.1 we know that

AB−1 is the infinitesimal generator of a strongly continuous semigroup S (t), t ≥ 0 in H.

Here, the nonlocal function H :P C(J , H)→ H and impulsive function

Ik ∈ C(H, H) (k = 1,2, · · · , m) are bounded functions. Furthermore, the fixed times tk satisfies

0 = t0 < t1 < t2 < · · · < tm < a, x(t+
k
) and x(t−

k
) denote the right and left limits of x(t) at

t = tk. And △x(tk) = x(t+
k
)− x(t−

k
) represents the jump in the state x at time tk, where

Ik determines the size of the jump. Denote J0 = [0, t1], Jk = (tk, tk+1], k = 1,2, · · · , m, and

define the following class of functions:

P C(J ,L2(Ω, H)) = {x : J →L2 : x(t) is continuous everywhere except for some tk at

which x(t−
k
) and x(t+

k
) exists and x(t−

k
) = x(tk), k = 1,2,3, · · · , m} is the Banach space of

piecewise continuous maps from J into L2(Ω, H) satisfying the condition

supt∈J E‖x(t)‖2 <∞. Let P C(J ,L2) be the closed subspace of P C(J ,LF2 (Ω, H)) consisting
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of measurable, Ft -adapted and H-valued processes x(t). Then P C(J ,L2) is a Banach space

endowed with the norm

‖x‖2P C = sup
t∈J

�

E‖x(t)‖2 : x ∈ P C(J ,L2)
	

.

The solution of the above equation is given by

x(t) = B−1S (t)[Bx0 − BH(x)− g(0, x(0))]+ B−1 g(t, x(t)) +

∫ t

0

B−1S (t − s)Cu(s)ds

+

∫ t

0

B−1S (t − s) f
�

s, x(s),

∫ s

0

k
�

s,τ, x(τ)
�

dτ,

∫ a

0

h
�

s,τ, x(τ)
�

dτ
�

ds

+

∫ t

0

B−1S (t − s)σ(s, x(s))dw(s) +
∑

0<tk<t

B−1S (t − tk)Ik(x(t
−
k
)), for a.e. t ∈ J ,

△x(tk) = x(t+
k
)− x(t−

k
) = Ik(x(t

−
k
)), k = 1,2, · · · , m,

x(0) + H(x) = x0 ∈ H. (12)

In order to prove the main result we shall assume some additional hypotheses:

(H16) AB−1 is the infinitesimal generator of a C0 semigroup S (t) in H and there exists con-

stant M̃ > 0 such that

‖S (t)‖2 ≤ M̃ , for all t ∈ J .

(H17) The linear operator W̃ : L2(J , U)→ H defined by

W̃u =

∫ a

0

B−1S (a− s)Cu(s)ds

is invertible with inverse operator W̃−1 take values in L2(J , U) \ kerW̃ and there exist

positive constants M̃C , M̃W such that

‖C‖2 ≤ M̃C , ‖W̃−1‖2 ≤ M̃W .

(H18) The nonlocal function H :P C(J , H)→ H is continuous and there exist constants

MH > 0, M̃H > 0 such that

E‖H(x)−H(y)‖2 ≤ MH‖x − y‖2, E‖H(x)‖2 ≤ M̃H .

(H19) Ik : H → H is continuous and there exist constants βk > 0, β̃k > 0 such that

E‖Ik(x)− Ik(y)‖
2 ≤ βk‖x − y‖2, k = 1,2, · · · , m

and β̃k = ‖Ik(0)‖
2, k = 1,2, · · · , m.



R. Sathya, K. Balachandran / Eur. J. Math. Sci., 1 (2012), 68-87 82

(H20) There exists a constant r∗ > 0 such that

8
n

MB M̃ M̃B (‖x0‖
2 + M̃H) + 2MB M̃

�

M2(‖x0‖
2 + M̃H) +M3

�

+MB[M2r∗+M3]

+a2MB M̃ M̃CG1+2a2MB M̃
�

M f

�

(1+2Mk+2Mh)r
∗+2(M̃k+M̃h)
�

+M̃ f

�

+ 2aMB M̃ Tr(Q)[Mσr∗ + M̃σ] + 2mMB M̃
h

m
∑

k=1

βkr∗+

m
∑

k=1

β̃k

io

≤ r∗

and ν∗ = 7
�

(1+ 6a2MB M̃ M̃C M̃W )(C1+ C2 + C3+ C4 + C5)
	

,

where C1 = MB M̃ M̃B MH , C2 = MB M̃ M1MH +MB M1,

C3 = a2MB M̃ M f (1+Mk +Mh), C4 = aMB M̃ Tr(Q)Mσ,

C5 = mMB M̃

m
∑

k=1

βk.

Theorem 3. If the assumptions (H3)(ii) − (H7) and (H16) − (H20) are satisfied, then the

system (11) is controllable on J provided

7
�

(1+ 6a2MB M̃ M̃C M̃W )(C1+ C2 + C3 + C4 + C5)
	

< 1.

Proof: We define the control operator by using the hypothesis (H2)

u(t)=W̃−1
h

x1−B−1S (a)
�

Bx0−BH(x)−g(0, x(0))
�

−B−1 g(a, x(a))

−

∫ a

0

B−1S (a− s) f
�

s, x(s),

∫ s

0

k
�

s,τ, x(τ)
�

dτ,

∫ a

0

h
�

s,τ, x(τ)
�

dτ
�

ds

−

∫ a

0

B−1S (a− s)σ(s, x(s))dw(s)−
∑

0<tk<a

B−1S (a− tk)Ik(x(t
−
k
))
i

(t).

Let Y ∗r be a nonempty closed subset of P C(J ,L2) defined by

Y ∗r = {x : x ∈ P C(J ,L2)|E‖x(t)‖
2 ≤ r∗}.

Consider a mapping Ψ∗ : Y ∗r →Y
∗
r defined by

(Ψ∗x)(t) = B−1S (t)[Bx0 − BH(x)− g(0, x(0))]+ B−1 g(t, x(t))+

∫ t

0

B−1S (t − s)Cu(s)ds

+

∫ t

0

B−1S (t − s) f
�

s, x(s),

∫ s

0

k
�

s,τ, x(τ)
�

dτ,

∫ a

0

h
�

s,τ, x(τ)
�

dτ
�

ds

+

∫ t

0

B−1S (t − s)σ(s, x(s))dw(s) +
∑

0<tk<t

B−1S (t − tk)Ik(x(t
−
k
)).

All the functions involved in the operator are continuous therefore Ψ∗ is continuous. From

our assumptions we can evaluate

E‖ux (t)‖
2 ≤ 8M̃W

n

‖x1‖
2+MB M̃ M̃B‖x0‖

2+MB M̃ M̃B M̃H+2MB M̃
�

M2(‖x0‖
2+M̃H)+M3

�
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+MB(M2r∗+M3)+2a2MB M̃
�

M f

�

(1+2Mk+2Mh)r
∗+2(M̃k+M̃h)
�

+ M̃ f

�

+2aMB M̃ Tr(Q)[Mσr∗ + M̃σ] + 2mMB M̃
h

m
∑

k=1

βkr∗ +

m
∑

k=1

β̃k

io

:= G1.

E‖ux (t)− uy(t)‖
2 ≤ 6M̃W

n

MB M̃ M̃B MH+MB M̃ M1MH+MB M1 + aMB M̃ Tr(Q)Mσ

+a2MB M̃ M f (1+Mk +Mh) +mMB M̃

m
∑

k=1

βk

o

‖x − y‖2.

We first show that the operator Ψ∗ maps Y ∗r into Y ∗r .

E‖Ψ∗x(t)‖2≤ 8
n

MB M̃ M̃B(‖x0‖
2+M̃H)+2MBM̃

�

M2(‖x0‖
2+M̃H)+M3

�

+MB[M2r∗+M3]

+a2MB M̃ M̃CG1+2a2MB M̃
�

M f

�

(1+2Mk+2Mh)r
∗+2(M̃k+M̃h)
�

+M̃ f

�

+2aMB M̃ Tr(Q)[Mσr∗+ M̃σ] + 2mMB M̃
h

m
∑

k=1

βkr∗+

m
∑

k=1

β̃k

io

.

From (H20) we obtain E‖(Ψ∗x)(t)‖2 ≤ r∗. Hence Ψ∗ maps Y ∗r into itself. Let x , y ∈ Y ∗r , then

we have

E‖Ψ∗x(t)−Ψ∗ y(t)‖2 ≤ 7
�

(1+6a2MB M̃ M̃C M̃W )
�

MB M̃ M̃B MH +MB M̃ M1MH +MB M1

+a2MB M̃ M f (1+Mk +Mh) + aMB M̃ Tr(Q)Mσ +mMB M̃

m
∑

k=1

βk

�	

‖x − y‖2

≤ 7
�

(1+ 6a2MB M̃ M̃C M̃W )(C1 + C2+ C3 + C4 + C5)
	

‖x − y‖2 ≤ ν∗‖x − y‖2.

Since ν∗ < 1, the mapping Ψ∗ is a contraction and hence there exists a unique fixed point

x ∈ Y ∗r such that (Ψ∗x)(t) = x(t). This fixed point is then the solution of the system (11)

and clearly, x(a) = (Ψ∗x)(a) = x1 which implies that the system (11) is controllable on J .

5. Example

Consider the following partial integrodifferential equation of the form

∂
h

(z(t, y) − zy y (t, y))−
1

2
cos z(t, y)
i

=

�

−
∂ 2

∂ y2

h

z(t, y) +

∫ t

0

l(t − s)z(s, y)ds
i

+µ(t, y)

+
z(t, y)

(1+ t2)
+ z(t, y)

∫ t

0

e−z(s,y)

(1+ t2)(1+ s)
ds+

∫ 1

0

sin z(s, y)

(1+ t2)(1+ s)
ds

�

∂ t

+
1

2
e−t(1+ t2)z(t, y)dw(t), t ∈ J := [0,1], y ∈ [0,1],

z(t, 0) = z(t, 1) = 0, t ∈ J ,
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z(0, y) +

p
∑

i=1

ciz(t i , y) = z0(y), y ∈ [0,1], (13)

where 0< t1 < t2 · · ·< tp < 1, p is a positive integer and z0(y) ∈ H. Take

H = K = U = L2([0,1]) and define the operators A : D(A) ⊂ H → H and B : D(B) ⊂ H → H

by

Az = −zy y , Bz = z − zy y ,

respectively, where each domain D(A), D(B) is given by

D(A) = D(B) = {z ∈ H, z, zy are absolutely continuous, zy y ∈ H and z(0) = z(1) = 0}.

Then A and B can be written as

Az =

∞
∑

n=1

n2(z, zn)zn, z ∈ D(A),

Bz =

∞
∑

n=1

(1+ n2)(z, zn)zn, z ∈ D(B),

where zn(s) =
Æ

2

π
sin ns, n = 1,2, · · · is the orthogonal set of eigenvectors of A. Furthermore,

for z ∈ H we have

B−1z =

∞
∑

n=1

1

(1+ n2)
(z, zn)zn,

AB−1z =

∞
∑

n=1

n2

1+ n2
(z, zn)zn,

T (t)z =

∞
∑

n=1

e
−n2

n2+1
t
(z, zn)zn.

It is easy to see that AB−1 generates a strongly continuous semigroup T (t) for t ≥ 0 on H such

that ‖T (t)‖ ≤ e−t , t > 0. It is well known from [12] that the integrodifferential system (6)

has an associated resolvent operator R(t) such that ‖R(t)‖ ≤ e−t for t > 0 and the function

F(t) = l(t) is continuous and bounded for t > 0 which satisfies (H1). Assume that the

operator W : L2(J , U)→ H defined by

Wu =

∫ 1

0

B−1R(1− s)µ(s, y)ds

has an bounded invertible operator W−1 which takes values in L2(J , U)/KerW and satisfies

condition (H2) for y ∈ [0,1].

Put x(t) = z(t, ·) and u(t) = µ(t, ·) where µ : J × [0,1]→ [0,1] is continuous,

g(t, x(t)) =
1

2
cos z(t, y), σ(t, x(t)) =

1

2
e−t(1+ t2)z(t, y),
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q(t1, t2, · · · , tp, x(t1), x(t2), · · · , x(tp)) =

p
∑

i=1

ciz(t i , y),

f
�

t, x(t),

∫ t

0

k(t, s, x(s))ds,

∫ a

0

h(t, s, x(s))ds
�

=
z(t, y)

(1+ t2)
+ z(t, y)

∫ t

0

e−z(s,y)

(1+ t2)(1+ s)
ds

+

∫ 1

0

sin z(s, y)

(1+ t2)(1+ s)
ds.

With this choice of A, B, f , g,h, k,q,σ, C = I , the identity operator and w(t), one dimensional

standard wiener process, the equation (13) can be written in the abstract formulation of the

system (5). Further we have











z(t, y)

(1+ t2)
+ z(t, y)

∫ t

0

e−z(s,y)

(1+ t2)(1+ s)
ds+

∫ 1

0

sin z(s, y)

(1+ t2)(1+ s)
ds











≤
1

1+ t2
(1+ 2 log2)‖z‖.

Further all the other assumptions (H3) − (H9) are obviously satisfied and it is possible to

choose ci ’s in such a way that the constant δ < 1. Hence, by Theorem 1, the system (13) is

controllable on J .
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