EUROPEAN JOURNAL OF MATHEMATICAL SCIENCES

Vol. 1, No. 1, 2012, 17-26 www.ejmathsci.com

Dual of a Wilson Frame

Shiv Kumar Kaushik^{1,*}, Suman Panwar²

¹ Department of Mathematics, Kirori Mal College, University of Delhi, Delhi-110007, India

² Department of Mathematics, University of Delhi, Delhi-110007, India

Abstract. In this paper Wilson frame as a generalization of Wilson bases has been defined. A sufficient condition for a Wilson system to be a Wilson Bessel sequence in terms of a Gabor Bessel sequence has been given. It is shown that the canonical dual frame of a Wilson frame may not have a Wilson structure. Also, a sufficient condition for two Wilson Bessel sequences to be dual frames has been given in terms of dual Gabor frames.

2010 Mathematics Subject Classifications: 42C15, 42A38

Key Words and Phrases: Gabor Bessel sequence, Wilson Bessel sequence, Wilson frame, Gabor frame

1. Introduction

Gabor systems are time and frequency shifted images of a signal function f, called an atom. Gabor systems have become a popular tool, both in theory and applications. However, one drawback in view of Balian-Low Theorem is that it is impossible to construct Gabor bases for $L^2(\mathbb{R})$ having good time-frequency localization [6]. Replacing the frequency-shift (modulation) with multiplication by suitably chosen trigonometric functions, we get a system called Wilson system which under certain conditions is an orthonormal basis.

Using ideas of Wilson [8, 9], Daubechies, Jaffard and Journe [3] constructed orthonormal Wilson bases which have good localization properties in time and frequency simultaneously. In [4], it has been proved that Wilson bases of exponential decay are unconditional bases for all modulation spaces on \mathbb{R} including the classical Bessel potential space and the Schwartz spaces. Also, Wilson bases are no unconditional bases for the ordinary L^p -spaces for $p \neq 2$ [4]. Approximation properties of Wilson bases are studied in [1].

Generalizations of Wilson bases to non-rectangular lattices are discussed in [7] with motivation from wireless communication and cosines modulated filter banks. Modified Wilson orthonormal bases are studied in [10].

This paper starts with the definition of a Wilson system [5] followed by the definition of a

http://www.ejmathsci.com

© 2012 EJMATHSCI All rights reserved.

^{*}Corresponding author.

Email addresses: shikk2003@yahoo.co.in (S. Kaushik), spanwar87@gmail.com (S. Panwar)

Wilson frame.

In this paper, a sufficient condition for a Wilson system to be a Wilson Bessel sequence in terms of a Gabor Bessel sequence is given. It is shown that the canonical dual frame of a Wilson frame may not have a Wilson structure. Finally, a sufficient condition for two Wilson Bessel sequences to be dual frames is given.

2. Preliminaries

Definition 1. A sequence $\{x_n\}$ in a Hilbert space H is said to be a frame for H if there exist constants A and B with $0 < A \le B < \infty$ such that

$$A||x||^{2} \leq \sum_{n} |\langle x, x_{n} \rangle|^{2} \leq B||x||^{2}, \ x \in H$$
(1)

The positive constants *A* and *B*, respectively, are called lower and upper frame bounds for the frame $\{x_n\}$. The inequality (1) in Definition 1, is called the *frame inequality* for the frame $\{x_n\}$. A sequence $\{x_n\} \in H$ is called a *Bessel sequence* if it satisfies upper frame inequality in (1) of Definition 1.

Definition 2. For a Bessel sequence $\{x_n\}$ in a Hilbert space H, the frame operator S is defined as $S : H \to H$ such that $Sx = \sum \langle x, x_n \rangle x_n$ for all x in H.

Daubechies, Grossmann and Meyer [3] were credited for combining Gabor analysis with frame theory. They were the first to construct tight frames for $L^2(\mathbb{R})$ having the form $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$, where

$$E_{mb}: L^2(\mathbb{R}) \to L^2(\mathbb{R}), (E_{mb}g)(x) = e^{2\pi i m b x} g(x - na)$$

and

$$T_{na}: L^2(\mathbb{R}) \to L^2(\mathbb{R}), (T_{na}g)(x) = g(x - na), \ a > 0, b > 0.$$

Definition 3. Let $g \in L^2(\mathbb{R})$ and a, b be positive constants. Then, the sequence $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ is called a Gabor system for $L^2(\mathbb{R})$. Further, $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ is called a Gabor frame for $L^2(\mathbb{R})$, if there exist constants A and B with $0 < A \leq B < \infty$ such that

$$A||f||^{2} \leq \sum_{n} |\langle f, E_{mb} T_{na} g \rangle|^{2} \leq B||f||^{2}, \ f \in L^{2}(\mathbb{R})$$
(2)

The sequence $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ is called a Gabor Bessel sequence for $L^2(\mathbb{R})$ if it satisfies the upper frame inequality in (2) in Definition 3.

For literature related to Gabor frames, one may refer to [2]

Definition 4 ([5]). For $g \in L^2(\mathbb{R})$, the associated Wilson system $W(g) = \{\psi_{k,n}g\}_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}}$ is given by the functions

$$\psi_{k,n}g = c_n T_{\frac{k}{2}}(E_n + (-1)^{k+n}E_{-n})g$$
, $k \in \mathbb{Z}$ and $n \in \mathbb{N}_0$,

where $c_0 = \frac{1}{2}$, and $c_n = \frac{1}{\sqrt{2}}$ for $n \ge 1$ and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

3. Main Results

We begin this section with the definition of a Wilson frame.

Definition 5. The Wilson system $W(g) = \{\psi_{k, n}g\}_{k \in \mathbb{Z} \atop n \in \mathbb{N}_0}$ for $L^2(\mathbb{R})$ is called a Wilson frame, if there exist constants A and B with $0 < A \le B < \infty$ such that

$$A\|f\|^{2} \leq \sum_{k \in \mathbb{Z} \atop n \in \mathbb{N}_{0}} |\langle f, \psi_{k,n}g \rangle|^{2} \leq B\|f\|^{2}, \text{ for all } f \in L^{2}(\mathbb{R}).$$

$$(3)$$

The constants *A* and *B* are called lower frame bound and upper frame bound respectively for the Wilson frame W(g). The Wilson system $W(g) = \{\psi_{k,n}g\}_{k\in\mathbb{Z}\atop n\in\mathbb{N}_0}$ is called a *Wilson Bessel sequence* if it satisfies upper frame inequality in (3) in Definition 5.

In the following result, we give a sufficient condition for a Wilson system to be a Wilson Bessel sequence in terms of a Gabor Bessel sequence.

Theorem 1. Let $g \in L^2(\mathbb{R})$.Let $\{E_n T_{\frac{k}{2}}g\}_{n, k \in \mathbb{Z}}$ be a Gabor Bessel sequence with Bessel bound B. Then the Wilson system $\{\psi_{k, n}g\}_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}}$ which can be expressed as

$$\{(-1)^{kn}c_n(E_nT_{\frac{k}{2}}+(-1)^{k+n}E_{-n}T_{\frac{k}{2}})g\}_{k\in\mathbb{Z}\atop n\in\mathbb{N}_0}\}$$

is a Wilson Bessel sequence with Bessel bound B.

Proof. For $k \in \mathbb{Z}$ and $n \in \mathbb{N}_0$, we have

$$\begin{split} \psi_{k,n}g =& c_n T_{\frac{k}{2}} E_n g + c_n (-1)^{k+n} T_{\frac{k}{2}} E_{-n}g \\ =& e^{-2\pi i \frac{k}{2}n} c_n E_n T_{\frac{k}{2}} g + e^{-2\pi i \frac{k}{2}(-n)} c_n (-1)^{k+n} E_{-n} T_{\frac{k}{2}} g \\ =& (-1)^{kn} c_n E_n T_{\frac{k}{2}} g + (-1)^{kn+k+n} c_n E_{-n} T_{\frac{k}{2}} g \\ =& (-1)^{kn} c_n (E_n T_{\frac{k}{2}} + (-1)^{k+n} E_{-n} T_{\frac{k}{2}}) g. \end{split}$$

Also, since $\{E_n T_{\frac{k}{2}}g\}_{n, k \in \mathbb{Z}}$ is a Gabor Bessel sequence with Bessel bound *B*, we have

$$\sum_{k \in \mathbb{Z} \atop n \in \mathbb{Z}} |\langle E_n T_{\frac{k}{2}}g, f \rangle|^2 \le B ||f||^2, \text{ for all } f \in L^2(\mathbb{R})$$

Note that

$$\begin{split} \sum_{k \in \mathbb{Z} \atop n \in \mathbb{N}_0} |\langle \psi_{k,n}g, f \rangle|^2 &= \sum_{k \in \mathbb{Z} \atop n \in \mathbb{N}_0} |\langle (-1)^{kn} c_n (E_n T_{\frac{k}{2}}g + (-1)^{k+n} E_{-n} T_{\frac{k}{2}}g), f \rangle|^2 \\ &= \sum_{k \in \mathbb{Z} \atop n \in \mathbb{N}_0} |(-1)^{kn} c_n \langle E_n T_{\frac{k}{2}}g, f \rangle + (-1)^{kn+k+n} c_n \langle E_{-n} T_{\frac{k}{2}}g, f \rangle|^2 \end{split}$$

$$\begin{split} &= \sum_{k \in \mathbb{Z}} |\frac{1}{2} \langle E_0 T_{\frac{k}{2}} g, f \rangle + (-1)^k \frac{1}{2} \langle E_0 T_{\frac{k}{2}} g, f \rangle |^2 \\ &+ \sum_{k \in \mathbb{Z}} |\frac{1}{\sqrt{2}} (-1)^{kn} \langle E_n T_{\frac{k}{2}} g, f \rangle + \frac{(-1)^{kn+k+n}}{\sqrt{2}} \langle E_{-n} T_{\frac{k}{2}} g, f \rangle |^2 \\ &\leq \frac{1}{4} \sum_{k \in \mathbb{Z}} (|\langle E_0 T_{\frac{k}{2}} g, f \rangle|^2 + |\langle E_0 T_{\frac{k}{2}} g, f \rangle|^2) \\ &+ \frac{1}{2} \sum_{k \in \mathbb{Z}} (|\langle E_n T_{\frac{k}{2}} g, f \rangle|^2 + |\langle E_{-n} T_{\frac{k}{2}} g, f \rangle|^2) \end{split}$$

Hence, we have

$$\sum_{k\in\mathbb{Z}\atop n\in\mathbb{N}_0} |\langle \psi_{k,n}g,f\rangle|^2 \le \sum_{k,n\in\mathbb{Z}} |\langle E_n T_{\frac{k}{2}}g,f\rangle|^2 \le B ||f||^2, \text{ for all } f \in L^2(\mathbb{R}).$$

Remark 1. By frame decomposition, we know that if $\{x_n\}$ is a frame in a Hilbert space H with frame operator S, then $x = \sum \langle x, S^{-1}x_n \rangle x_n$, for all x in H. In case of a Gabor frame $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ in $L^2(\mathbb{R})$, we know that

$$f = \sum_{m,n\in\mathbb{Z}} \langle f, S^{-1}(E_{mb}T_{na}g) \rangle E_{mb}T_{na}g$$

$$= \sum_{m,n\in\mathbb{Z}} \langle f, E_{mb}T_{na}S^{-1}g \rangle E_{mb}T_{na}g.$$
(4)

In the following Theorem we prove that (4) of Remark 1 is partially satisfied by a Wilson frame.

Theorem 2. Let $g \in L^2(\mathbb{R})$ and assume that $\{\psi_{k,n}g\}_{k\in\mathbb{Z}}$ is a Wilson Bessel sequence with frame operator S. Let $k' \in \mathbb{Z}, n' \in \mathbb{N}_0$. If k' + n' is even, then $S\psi_{k',n'}g = \psi_{k',n'}Sg$. Further, if $\{\psi_{k,n}g\}_{k\in\mathbb{N}_0} = \psi_{k',n'}Sg$. Further, $f = \{\psi_{k,n}g\}_{k\in\mathbb{N}_0} = \psi_{k',n'}Sg$.

Proof. Let $f \in L^2(\mathbb{R})$, and assume that $\{\psi_{k, n}g\}_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}}$ is a Wilson Bessel sequence. We have

$$S\psi_{k',n'}f = \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} \langle \psi_{k',n'}f, \psi_{k,n}g \rangle \psi_{k,n}g$$

$$= \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} (-1)^{k'n'+kn} c_n c'_n \langle E_{n'}T_{\frac{k'}{2}}f, E_nT_{\frac{k}{2}}g \rangle \psi_{k,n}g$$

$$+ \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} (-1)^{k'n'+kn+k+n} c_n c'_n \langle E_{n'}T_{\frac{k'}{2}}f, E_{-n}T_{\frac{k}{2}}g \rangle \psi_{k,n}g$$

$$+ \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} (-1)^{k'n'+kn+k'+n'} c_n c'_n \langle E_{-n'} T_{\frac{k'}{2}} f, E_n T_{\frac{k}{2}} g \rangle \psi_{k,n} g$$

$$+ \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} (-1)^{k'n'+k'+n'+kn+k+n} c_n c'_n \langle E_{-n'} T_{\frac{k'}{2}} f, E_{-n} T_{\frac{k}{2}} g \rangle \psi_{k,n} g$$

Also, we have

$$\sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} (-1)^{k'n'+kn} c_n c'_n \langle E_{n'} T_{\frac{k'}{2}} f, E_n T_{\frac{k}{2}} g \rangle \psi_{k,n} g$$

=
$$\sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} (-1)^{k'n'+kn} c_n c'_n \langle E_{n'} T_{\frac{k'}{2}} f, E_n T_{\frac{k}{2}} g \rangle \{(-1)^{kn} c_n (E_n T_{\frac{k}{2}} + (-1)^{k+n} E_{-n} T_{\frac{k}{2}}) g \}$$

Note that for $f \in L^2(\mathbb{R})$,

$$T_a E_b f(x) = \exp(-2\pi i ba) E_b T_a f(x).$$
(5)

Using commutator relations given in (5) in Theorem 2

$$\begin{split} &\sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} (-1)^{k'n'+kn} c_n c'_n \langle E_{n'} T_{\frac{k'}{2}} f, E_n T_{\frac{k}{2}} g \rangle \psi_{k,n} g \\ &= \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} (-1)^{k'n'} c_n^2 c'_n \langle f, \exp(2\pi i \frac{k}{2} (n-n')) E_{n-n'} T_{\frac{k-k'}{2}} g \rangle E_n T_{\frac{k}{2}} g \\ &+ \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} (-1)^{k'n'+k+n} c_n^2 c'_n \langle f, \exp(2\pi i \frac{k}{2} (n-n')) E_{n-n'} T_{\frac{k-k'}{2}} g \rangle E_{-n} T_{\frac{k}{2}} g \end{split}$$

performing the change of variables $n \rightarrow n + n', k \rightarrow k + k'$ and using the commutator relations given in (5) in Theorem 2 again, we obtain

$$\begin{split} \sum_{k\in\mathbb{Z}\atop n\in\mathbb{N}_{0}} (-1)^{k'n'+kn} c_{n}c_{n}' \langle E_{n'}T_{\frac{k'}{2}}f, E_{n}T_{\frac{k}{2}}g \rangle \psi_{k,n}g \\ = (-1)^{k'n'} c_{n}' (\sum_{k\in\mathbb{Z}\atop n\in\mathbb{N}_{0}} c_{n}^{2} \langle f, E_{n}T_{\frac{k}{2}}g \rangle E_{n'}T_{\frac{k'}{2}}g E_{n}T_{\frac{k}{2}}g \\ + \sum_{k\in\mathbb{Z}\atop n\in\mathbb{N}_{0}} (-1)^{k+n} c_{n}^{2} \langle f, E_{n}T_{\frac{k}{2}}g \rangle E_{-n'}T_{\frac{k'}{2}}g E_{-n}T_{\frac{k}{2}}g) \end{split}$$

Similarly,

$$\sum_{k\in\mathbb{Z}\atop n\in\mathbb{N}_0} (-1)^{k'n'+kn+k+n} c_n c'_n \langle E_{n'}T_{\frac{k'}{2}}f, E_{-n}T_{\frac{k}{2}}g \rangle \psi_{k,n}g$$

$$= (-1)^{k'n'} c'_{n} \left(\sum_{k \in \mathbb{Z} \atop n \in \mathbb{N}_{0}} c_{n}^{2} \langle f, E_{-n} T_{\frac{k}{2}} g \rangle E_{n'} T_{\frac{k'}{2}} g E_{-n} T_{\frac{k}{2}} g \right)$$
$$+ \sum_{k \in \mathbb{Z} \atop n \in \mathbb{N}_{0}} (-1)^{k+n} c_{n}^{2} \langle f, E_{-n} T_{\frac{k}{2}} g \rangle E_{-n'} T_{\frac{k'}{2}} g E_{n} T_{\frac{k}{2}} g)$$

and

$$\begin{split} &\sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} (-1)^{k'n'+kn+k'+n'} c_n c'_n \langle E_{-n'} T_{\frac{k'}{2}} f, E_n T_{\frac{k}{2}} g \rangle \psi_{k,n} g \\ &= (-1)^{k'n'} c'_n ((-1)^{k'+n'} \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \langle f, E_n T_{\frac{k}{2}} g \rangle E_{-n'} T_{\frac{k'}{2}} g E_n T_{\frac{k}{2}} g \\ &+ \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} (-1)^{k+n} c_n^2 \langle f, E_n T_{\frac{k}{2}} g \rangle E_{n'} T_{\frac{k'}{2}} g E_{-n} T_{\frac{k}{2}} g) \end{split}$$

and

$$\begin{split} &\sum_{\substack{k\in\mathbb{Z}\\n\in\mathbb{N}_{0}}} (-1)^{k'n'+k'+n'+kn+k+n} c_{n}c_{n}' \langle E_{-n'}T_{\frac{k'}{2}}f, E_{-n}T_{\frac{k}{2}}g \rangle \psi_{k,n}g \\ =& (-1)^{k'n'+k'+n'} c_{n}' (\sum_{\substack{k\in\mathbb{Z}\\n\in\mathbb{N}_{0}}} c_{n}^{2} \langle f, E_{-n}T_{\frac{k}{2}}g \rangle E_{-n'}T_{\frac{k'}{2}}g E_{-n}T_{\frac{k}{2}}g \\ &+ \sum_{\substack{k\in\mathbb{Z}\\n\in\mathbb{N}_{0}}} (-1)^{k+n} c_{n}^{2} \langle f, E_{-n}T_{\frac{k}{2}}g \rangle E_{n'}T_{\frac{k'}{2}}g E_{n}T_{\frac{k}{2}}g) \end{split}$$

Finally,we obtain

$$\begin{split} S\psi_{k',n'}f =& (-1)^{k'n'}c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{\langle f, E_n T_{\frac{k}{2}}g \rangle \\ & E_{n'}T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g + (-1)^{k+n} \langle f, E_n T_{\frac{k}{2}}g \rangle E_{-n'}T_{\frac{k'}{2}}g E_{-n}T_{\frac{k}{2}}g \} \\ & + (-1)^{k'n'}c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{\langle f, E_{-n}T_{\frac{k}{2}}g \rangle \\ & E_{n'}T_{\frac{k'}{2}}g E_{-n}T_{\frac{k}{2}}g + (-1)^{k+n} \langle f, E_{-n}T_{\frac{k}{2}}g \rangle E_{-n'}T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g \} \\ & + (-1)^{k'n'}c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{(-1)^{k+n} \langle f, E_n T_{\frac{k}{2}}g \rangle E_{n'}T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g \} \\ & + (-1)^{k'n'+k'+n'}c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{\langle f, E_n T_{\frac{k}{2}}g \rangle E_{-n'}T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g \} \\ & + (-1)^{k'n'+k'+n'}c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{\langle f, E_n T_{\frac{k}{2}}g \rangle E_{-n'}T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g \} \\ & + (-1)^{k+n} \langle f, E_{-n} T_{\frac{k}{2}}g \rangle E_{n'}T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g \} \end{split}$$

$$+ (-1)^{k'n'+k'+n'} c'_{n} \sum_{k \in \mathbb{Z} \atop n \in \mathbb{N}_{0}} c_{n}^{2} \{ \langle f, E_{-n} T_{\frac{k}{2}} g \rangle E_{-n'} T_{\frac{k'}{2}} g E_{-n} T_{\frac{k}{2}} g \}$$

Also, we have

$$Sf = \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{ \langle f, E_n T_{\frac{k}{2}} g \rangle E_n T_{\frac{k}{2}} g + (-1)^{k+n} \langle f, E_n T_{\frac{k}{2}} g \rangle E_{-n} T_{\frac{k}{2}} g \}$$

+
$$\sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{ (-1)^{k+n} \langle f, E_{-n} T_{\frac{k}{2}} g \rangle E_n T_{\frac{k}{2}} g + \langle f, E_{-n} T_{\frac{k}{2}} g \rangle E_{-n} T_{\frac{k}{2}} g \}$$

Therefore

$$\begin{split} \psi_{k',n'}Sf = &(-1)^{k'n'}c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{\langle f, E_n T_{\frac{k}{2}}g \rangle E_{n'} T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g + (-1)^{k+n} \langle f, E_n T_{\frac{k}{2}}g \rangle E_{n'} T_{\frac{k'}{2}}g E_{-n} T_{\frac{k}{2}}g \} \\ &+ (-1)^{k'n'}c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{\langle f, E_{-n} T_{\frac{k}{2}}g \rangle E_{n'} T_{\frac{k'}{2}}g E_{-n} T_{\frac{k}{2}}g \} \\ &+ (-1)^{k+n} \langle f, E_{-n} T_{\frac{k}{2}}g \rangle E_{n'} T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g \} \\ &+ (-1)^{k'n'+k'+n'}c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{\langle f, E_n T_{\frac{k}{2}}g \rangle E_{-n'} T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g \} \\ &+ (-1)^{k'n'+k'+n'}c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{\langle f, E_{-n} T_{\frac{k}{2}}g \rangle E_{-n'} T_{\frac{k'}{2}}g E_{-n} T_{\frac{k}{2}}g \} \\ &+ (-1)^{k'n'+k'+n'}c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{\langle f, E_{-n} T_{\frac{k}{2}}g \rangle E_{-n'} T_{\frac{k'}{2}}g E_{-n} T_{\frac{k}{2}}g \} \\ &+ (-1)^{k'n'+k'+n'}c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{\langle f, E_{-n} T_{\frac{k}{2}}g \rangle E_{-n'} T_{\frac{k'}{2}}g E_{-n} T_{\frac{k}{2}}g \} \end{split}$$

Note that if k' + n' is an even integer, then $S\psi_{k',n'}f = \psi_{k',n'}Sf$ for all $f \in L^2(\mathbb{R})$. Thus $S\psi_{k',n'} = \psi_{k',n'}S$. Further, if $\{\psi_{k,n}g\}_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}}$ is a Wilson frame, then *S* is invertible. So, we have $S^{-1}S\psi_{k',n'}S^{-1} = S^{-1}\psi_{k',n'}SS^{-1}$. Hence, $\psi_{k',n'}(S^{-1}g) = S^{-1}(\psi_{k',n'}g)$

Remark 2. The result in Theorem 2 does not hold if for $k' \in \mathbb{Z}$, and $n' \in \mathbb{N}_0$, k' + n' is an odd integer.

In this case, we have

$$\begin{split} S\psi_{k',n'}f =& c_n' \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{ \langle f, E_n T_{\frac{k}{2}}g \rangle E_{n'} T_{\frac{k'}{2}} g E_n T_{\frac{k}{2}}g + (-1)^{k+n} \langle f, E_n T_{\frac{k}{2}}g \rangle E_{-n'} T_{\frac{k'}{2}} g E_{-n} T_{\frac{k}{2}}g \} \\ &+ c_n' \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{ \langle f, E_{-n} T_{\frac{k}{2}}g \rangle E_{n'} T_{\frac{k'}{2}} g E_{-n} T_{\frac{k}{2}}g + (-1)^{k+n} \langle f, E_{-n} T_{\frac{k}{2}}g \rangle E_{-n'} T_{\frac{k'}{2}} g E_n T_{\frac{k}{2}}g \} \end{split}$$

$$+ c'_{n} \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_{0}}} c^{2}_{n} \{(-1)^{k+n} \langle f, E_{n} T_{\frac{k}{2}} g \rangle E_{n'} T_{\frac{k'}{2}} g E_{-n} T_{\frac{k}{2}} g \}$$

$$- c'_{n} \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_{0}}} c^{2}_{n} \{ \langle f, E_{n} T_{\frac{k}{2}} g \rangle E_{-n'} T_{\frac{k'}{2}} g E_{n} T_{\frac{k}{2}} g + (-1)^{k+n} \langle f, E_{-n} T_{\frac{k}{2}} g \rangle E_{n'} T_{\frac{k'}{2}} g E_{n} T_{\frac{k}{2}} g \}$$

$$- c'_{n} \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_{0}}} c^{2}_{n} \{ \langle f, E_{-n} T_{\frac{k}{2}} g \rangle E_{-n'} T_{\frac{k'}{2}} g E_{-n} T_{\frac{k}{2}} g \}$$

and

$$\begin{split} \psi_{k',n'}Sf =& c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{ \langle f, E_n T_{\frac{k}{2}}g \rangle E_{n'} T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g + (-1)^{k+n} \langle f, E_n T_{\frac{k}{2}}g \rangle E_{n'} T_{\frac{k'}{2}}g E_{-n} T_{\frac{k}{2}}g \} \\ &+ c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{ \langle f, E_{-n} T_{\frac{k}{2}}g \rangle E_{n'} T_{\frac{k'}{2}}g E_{-n} T_{\frac{k}{2}}g + (-1)^{k+n} \langle f, E_{-n} T_{\frac{k}{2}}g \rangle E_{n'} T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g \} \\ &- c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{ \langle f, E_n T_{\frac{k}{2}}g \rangle E_{-n'} T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g + (-1)^{k+n} \langle f, E_n T_{\frac{k}{2}}g \rangle E_{-n'} T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g \} \\ &- c'_n \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} c_n^2 \{ \langle f, E_{-n} T_{\frac{k}{2}}g \rangle E_{-n'} T_{\frac{k'}{2}}g E_{-n} T_{\frac{k}{2}}g + (-1)^{k+n} \langle f, E_{-n} T_{\frac{k}{2}}g \rangle E_{-n'} T_{\frac{k'}{2}}g E_n T_{\frac{k}{2}}g \} \end{split}$$

Thus, $\psi_{k',n'}Sf \neq S\psi_{k',n'}f$.

Remark 3. The canonical dual frame of a frame $\{x_n\}$ with the frame operator S is given by $\{S^{-1}\{x_n\}\}$. The canonical dual frame of a Gabor frame has a Gabor structure but Theorem 2 and Remark 2 shows that the canonical dual frame for a Wilson frame does not have a Wilson structure.

Now we give a sufficient condition for the Wilson systems W(g) and W(h) to be dual Wilson frames. First, we prove a result in the form of a Lemma which will be used in the main result.

Lemma 1. For f, g in $L^2(\mathbb{R})$ let W(g) and W(h) be two Wilson Bessel sequences.W(g) and W(h) are dual Wilson frames if and only if

$$\langle e, f \rangle = \frac{1}{2} \sum_{k,n \in \mathbb{Z}} \langle (-1)^{k+n} T_{\frac{k}{2}} E_{-n} h, f \rangle \langle e, T_{\frac{k}{2}} E_n g \rangle + \frac{1}{2} \sum_{k,n \in \mathbb{Z}} \langle T_{\frac{k}{2}} E_n h, f \rangle \langle e, T_{\frac{k}{2}} E_n g \rangle,$$

for all e, f in $L^2(\mathbb{R})$

Proof. If W(g) and W(h) are two Bessel sequences, then they are dual frames if and only if

$$\langle e, f \rangle = \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} \langle W(h), f \rangle \langle e, W(g) \rangle, \text{ for all } e, f \in L^2(\mathbb{R})$$

REFERENCES

$$\begin{split} \Leftrightarrow \langle e,f \rangle &= \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}_0}} \langle e, c_n T_{\frac{k}{2}} E_n g + (-1)^{k+n} c_n T_{\frac{k}{2}} E_{-n} g \rangle \langle c_n T_{\frac{k}{2}} E_n h + (-1)^{k+n} c_n T_{\frac{k}{2}} E_{-n} h, f \rangle \\ \Leftrightarrow \langle e,f \rangle &= \frac{1}{2} \sum_{\substack{k,n \in \mathbb{Z} \\ n \in \mathbb{N}_0}} \langle T_{\frac{k}{2}} E_n h, f \rangle \langle e, T_{\frac{k}{2}} E_n g \rangle + \frac{1}{2} \sum_{\substack{k \in \mathbb{Z} \\ k \in \mathbb{Z}}} (-1)^k \langle T_{\frac{k}{2}} E_0 h, f \rangle \langle e, T_{\frac{k}{2}} E_0 g \rangle \\ &+ \frac{1}{2} \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}}} (-1)^{k+n} \langle T_{\frac{k}{2}} E_{-n} h, f \rangle \langle e, T_{\frac{k}{2}} E_n g \rangle + (-1)^{k-n} \langle T_{\frac{k}{2}} E_n h, f \rangle \langle e, T_{\frac{k}{2}} E_{-n} g \rangle \\ \Leftrightarrow \langle e, f \rangle &= \frac{1}{2} \sum_{\substack{k,n \in \mathbb{Z} \\ n \in \mathbb{Z}}} \langle T_{\frac{k}{2}} E_n h, f \rangle \langle e, T_{\frac{k}{2}} E_n g \rangle + \frac{1}{2} \sum_{\substack{k,n \in \mathbb{Z} \\ k,n \in \mathbb{Z}}} \langle (-1)^{k+n} T_{\frac{k}{2}} E_{-n} h, f \rangle \langle e, T_{\frac{k}{2}} E_n g \rangle \\ \end{split}$$

Theorem 3. Let $g,h \in L^2(\mathbb{R})$ and suppose that

- (a) $\{T_{\frac{k}{2}}E_nh\}_{k,n\in\mathbb{Z}}$ and $\{T_{\frac{k}{2}}E_ng\}_{k,n\in\mathbb{Z}}$ be dual frames.
- (b) $\{(-1)^{k+n}T_{\frac{k}{2}}E_{-n}h\}_{k,n\in\mathbb{Z}}$ and $\{T_{\frac{k}{2}}E_{n}g\}_{k,n\in\mathbb{Z}}$ be dual frames.

Then the Wilson systems W(g) and W(h) are dual Wilson frames.

Proof. By hypothesis (a) and (b),

$$\langle e, f \rangle = \sum_{k,n \in \mathbb{Z}} \langle T_{\frac{k}{2}} E_n h, f \rangle \langle e, T_{\frac{k}{2}} E_n g \rangle$$

and

$$\langle e, f \rangle = \sum_{k,n \in \mathbb{Z}} \langle (-1)^{k+n} T_{\frac{k}{2}} E_{-n} h, f \rangle \langle e, T_{\frac{k}{2}} E_{n} g \rangle \text{ for all } e, f \in L^{2}(\mathbb{R})$$

Now using Lemma 1 the result follows.

Remark 4. In view of Theorem 3 and commutator relations in (5) in Theorem 2 a sufficient condition for two Wilson Bessel sequences W(g) and W(h) to be dual frames in terms of dual Gabor Bessel sequences is obtained.

ACKNOWLEDGEMENTS The research of the second author is supported by CSIR vide letter no.09/045(1140)/2011 – EMR - I dated 9/11/2011

References

- [1] K. Bittner. Linear approximation and reproduction of polynomials by Wilson bases, J. Fourier Anal. Appl., 8(1), 85-108, 2002.
- [2] O. Christensen. Frames and Bases: An Introductory Course, Birkhausher, Boston, 2008.

- [3] I. Daubechies, S. Jaffard, and J.L. Journe. "A simple Wilson orthonormal basis with exponential decay". SIAM J.Math. Anal. 22, pp. 554-573, 1991.
- [4] H.G. Feichtinger, K. Gröchenig and D. Walnut. Wilson bases and Modulation spaces., Math. Nachr., 155 (1992), 7–17.
- [5] H. G. Feichtinger and T. Strohmer. Advances in Gabor Analysis, Birkhauser, Boston, 2003.
- [6] K. Gröchenig. Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
- [7] G. Kutyniok and T. Strohmer. Wilson bases for general time-frequency lattices, SIAM J. on Math. Anal., 37, 685–711, 2005.
- [8] D.J. Sullivan, J.J Rehr, J.W. Wilkins, and K.G. Wilson. "Phase space Warnier functions in electronic structure calculations", preprint, Cornell University, 1987.
- [9] K.G. Wilson. "Generalised Warnier functions", preprint, Cornell university, 1987.
- [10] P. Wojdyllo. Modified Wilson Orthonormal Bases, Sampling theory in Signal and Image Processing, 6(2), 223–235, 2007.