EUROPEAN JOURNAL OF MATHEMATICAL SCIENCES

Vol. 1, No. 1, 2012, 131-141 www.ejmathsci.com

Some Decompositions Of Continuity In Ideal Topological Spaces

K. Viswanathan, J. Jayasudha*

Post-Graduate and Research Department of Mathematics, N G M College, Pollachi - 642 001, Tamil Nadu, INDIA

Abstract. In this paper, we introduce and investigate the notions of pre- \mathscr{I} -regular sets and β - \mathscr{I} -regular sets in ideal topological spaces. Also we introduce the notions of weak $AB_{\mathscr{I}}$ -sets and $SC_{\mathscr{I}}$ -sets and to obtain decompositions of continuity. Further we have obtained a decomposition of \mathscr{I} -R-continuity.

2010 Mathematics Subject Classifications: 54A05; 54C05, 54C08, 54C10.

Key Words and Phrases: pre- \mathscr{I} -regular set, β - \mathscr{I} -regular set, $SC_{\mathscr{I}}$ -set, weak $AB_{\mathscr{I}}$ -set, gsp- \mathscr{I} -closed set, pre-gsp- \mathscr{I} -closed set, α -gsp- \mathscr{I} -closed set, $SC_{\mathscr{I}}$ -countinuous, weak $AB_{\mathscr{I}}$ -countinuous, β - \mathscr{I} -perfectly continuous, contra α -gsp- \mathscr{I} -continuous, contra pre-gsp- \mathscr{I} -continuous

1. Introduction and Preliminaries

An ideal \mathscr{I} on a topological space (X, τ) is a non-empty collection of subsets of X satisfying the following properties:(1) $A \in \mathscr{I}$ and $B \subseteq A$ imply $B \in \mathscr{I}$ (heredity); (2) $A \in \mathscr{I}$ and $B \in \mathscr{I}$ imply $A \cup B \in \mathscr{I}$ (finite additivity). A topological space (X, τ) with an ideal \mathscr{I} on X is called an *ideal topological space* and is denoted by (X, τ, \mathscr{I}) . For a subset $A \subseteq X$, $A^*(\mathscr{I}) = \{x \in X :$ $U \cap A \notin \mathscr{I}$ for every $U \in \tau(x)\}$, is called the *local function* [6] of A with respect to \mathscr{I} and τ . We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathscr{I})$ called the *-topology finer than τ is defined by $cl^*(A) = A \cup A^*$ [11]. Let (X, τ) denote a topological space on which no separation axioms are assumed unless explicitly stated. In a topological space (X, τ) , the closure and the interior of any subset A of X will be denoted by cl(A) and int(A), respectively.

Definition 1. A subset A of an ideal space (X, τ, \mathscr{I}) is called

- 1. α - \mathscr{I} -open [4] if $A \subseteq int(cl^*(int(A)))$.
- 2. semi- \mathscr{I} -open [4] if $A \subseteq cl^*(int(A))$.

Email addresses: visungm@yahoo.com (K. Viswanathan), jsudhu@gmail.com (J. Jayasudha)

http://www.ejmathsci.com

131

© 2012 EJMATHSCI All rights reserved.

^{*}Corresponding author.

- 3. pre- \mathscr{I} -open [3] if $A \subseteq int(cl^*(A))$.
- 4. β - \mathscr{I} -open [4] if $A \subseteq cl(int(cl^*(A)))$.
- 5. t- \mathscr{I} -set [4] if $int(cl^*(A)) = int(A)$.
- 6. α^* - \mathscr{I} -set [4] if $int(cl^*(int(A))) = int(A)$.
- 7. *S*- \mathscr{I} -set [4] if $cl^*(int(A)) = int(A)$.
- 8. $C_{\mathscr{I}}$ -set [4] if $A = C \cap D$ where $C \in \tau$ and D is an α^* - \mathscr{I} -set.
- 9. semi-I-regular set [8] if A is both a t-I-set and a semi-I-open set.
- 10. $AB_{\mathscr{I}}$ -set [8] if $A = C \cap D$ where $C \in \tau$ and D is a semi- \mathscr{I} -regular set.
- 11. $B_{\mathscr{I}}$ -set [4] if $A = C \cap D$ where $C \in \tau$ and D is a t- \mathscr{I} -set.
- 12. regular- \mathscr{I} -closed set [7] if $A = (int(A))^*$.
- 13. $A_{\mathscr{I}}$ -set [7] if $A = C \cap D$ where $C \in \tau$ and D is a regular- \mathscr{I} -closed set.
- 14. \mathscr{I} -*R*-open set [12] if $A = int(cl^*(A))$.
- 15. \mathscr{I} -locally closed set [3] (briefly, \mathscr{I} -LC set) if $A = U \cap V$ where U is open and V is *-perfect.
- 16. weakly- \mathscr{I} -locally closed set [9] (briefly, weakly- \mathscr{I} -LC set) if $A = U \cap V$ where U is open and V is *-closed.

Definition 2. An ideal space (X, τ, \mathscr{I}) is said to be \mathscr{I} -submaximal [1] if every subset of X is \mathscr{I} -locally closed.

Definition 3. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is said to be α - \mathscr{I} -continuous [4] (resp. semi- \mathscr{I} -continuous [4]) if $f^{-1}(V)$ is a α - \mathscr{I} -closed set (resp. semi- \mathscr{I} -closed set) in (X, τ, \mathscr{I}) for each closed set V of (Y, σ) .

Definition 4. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is said to be contra β - \mathscr{I} -continuous [2] if $f^{-1}(V)$ is β - \mathscr{I} -closed in (X, τ, \mathscr{I}) for every open set V of (Y, σ) .

2. Pre-*I*-regular Sets

Definition 5. A subset A of an ideal space (X, τ, \mathscr{I}) is said to be pre- \mathscr{I} -regular if A is both an S- \mathscr{I} -set and a pre- \mathscr{I} -open set.

Remark 1. The concepts of *S*-*I*-sets and pre-*I*-open sets are independent.

Example 1. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathscr{I} = \{\emptyset, \{b\}\}$. Then,

1. $A = \{c\}$ is an S-*I*-set but not a pre-*I*-open set.

- K. Viswanathan, J. Jayasudha / Eur. J. Math. Sci., 1 (2012), 131-141
 - 2. $A = \{a, d\}$ is a pre- \mathscr{I} -open set but not an S- \mathscr{I} -set.

Proposition 1. Let (X, τ, \mathscr{I}) be an ideal space and $A \subset X$. Then the following hold:

- 1. If A is pre-*I*-regular, then A is a pre-*I*-open set;
- 2. If A is pre-*I*-regular, then A is an S-*I*-set.

The converse of Proposition 1 need not be true as seen from the following example.

Example 2. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathscr{I} = \{\emptyset, \{b\}\}$. Then,

- 1. $A = \{c\}$ is an S-I-set but not a pre-I-regular set.
- 2. $A = \{a, d\}$ is a pre- \mathscr{I} -open set but not a pre- \mathscr{I} -regular set.
- **Remark 2.** 1. Semi-*I*-open sets and pre-*I*-regular sets are independent concepts.
 - 2. α - \mathscr{I} -open sets and pre- \mathscr{I} -regular sets are independent concepts.
- **Example 3.** Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathscr{I} = \{\emptyset, \{b\}\}$. Then,
 - 1. $A = \{a\}$ is a pre- \mathscr{I} -regular set but not an α - \mathscr{I} -open set and a semi- \mathscr{I} -open set.
 - 2. $A = \{a, d\}$ is an α - \mathscr{I} -open set and a semi- \mathscr{I} -open set but not a pre- \mathscr{I} -regular set.

Definition 6. A subset A of an ideal space (X, τ, \mathscr{I}) is said to be an $SC_{\mathscr{I}}$ -set if $A = C \cap D$ where $C \in \tau$ and D is a pre- \mathscr{I} -regular set.

Proposition 2. In an ideal topological space (X, τ, \mathscr{I}) , the following properties hold:

- 1. Every open set is an $SC_{\mathscr{G}}$ -set.
- 2. Every α - \mathscr{I} -open set is an $SC_{\mathscr{I}}$ -set.
- 3. Every pre- \mathscr{I} -regular set is an $SC_{\mathscr{I}}$ -set.
- 4. Every $SC_{\mathscr{G}}$ -set is a $C_{\mathscr{G}}$ -set.
- Proof. This is obvious.

Example 4. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathscr{I} = \{\emptyset, \{b\}\}$. Then,

- 1. $A = \{a\}$ is an $SC_{\mathscr{I}}$ -set but not an open set.
- 2. $A = \{a\}$ is an $SC_{\mathscr{I}}$ -set but not an α - \mathscr{I} -open set.
- 3. $A = \{a, d\}$ is an $SC_{\mathscr{I}}$ -set but not a pre- \mathscr{I} -regular set.
- 4. $A = \{c\}$ is a $C_{\mathscr{A}}$ -set but not an $SC_{\mathscr{A}}$ -set.

Theorem 1. For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following are equivalent:

- 1. A is an open set;
- 2. A is a semi- \mathscr{I} -open set and an $SC_{\mathscr{I}}$ -set.
- *Proof.* (1) \Rightarrow (2): This is obvious.

(2) \Rightarrow (1): Let *A* be a semi- \mathscr{I} -open set and an $SC_{\mathscr{I}}$ -set. Then we have $A \subset cl^*(int(A))$. Also since *A* is an $SC_{\mathscr{I}}$ -set we have $A = U \cap V$, where *U* is open and *V* is a pre- \mathscr{I} -regular set. Further since cl^* is a Kuratowski closure operator,

$$A \subset cl^*(int(A)) = cl^*(int(U \cap V)) = cl^*(int(U) \cap int(V)) \subseteq cl^*(int(U)) \cap cl^*(int(V)) \rightarrow (1).$$

Additionally, Since *V* is a pre- \mathscr{I} -regular set, *V* is also an S- \mathscr{I} -set. Thus $int(V) = cl^*(int(V))$. Using this in (1), we have $A \subset cl^*(int(U)) \cap int(V)$. Since $A \subset U$, we have

$$A = U \cap A \subset U \cap (cl^*(int(U)) \cap int(V))$$
$$= (U \cap (cl^*(int(U))) \cap int(V))$$
$$= U \cap int(V) \text{ and } \subset U \cap int(V).$$

Since U is an open set, we have $A \subset U \cap int(V) = int(U \cap V) = int(A)$. Thus $A \in \tau$.

Remark 3. The notions of semi- \mathscr{I} -open sets and $SC_{\mathscr{I}}$ -sets are independent.

Example 5. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathscr{I} = \{\emptyset, \{b\}\}$. Then,

1. $A = \{a\}$ is an $SC_{\mathscr{I}}$ -set but not a semi- \mathscr{I} -open set.

2. $A = \{a, c, d\}$ is a semi- \mathscr{I} -open set but not an $SC_{\mathscr{I}}$ -set.

3. β - \mathscr{I} -regular Sets

Definition 7. A subset A of an ideal space (X, τ, \mathscr{I}) is said to be β - \mathscr{I} -regular if A is both a β - \mathscr{I} -open set and an α^* - \mathscr{I} -set.

Remark 4. β - \mathscr{I} -open sets and α^* - \mathscr{I} -sets are independent concepts.

Example 6. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{c\}, \{a, c\}, X\}$ and $\mathscr{I} = \{\emptyset, \{c\}\}$. Then,

- 1. $A = \{a, c\}$ is a β - \mathscr{I} -open set but not an α^* - \mathscr{I} -set.
- 2. $A = \{a\}$ is an α^* - \mathscr{I} -set but not a β - \mathscr{I} -open set.

Proposition 3. For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties hold:

- 1. Every semi- \mathscr{I} -regular set is β - \mathscr{I} -regular.
- 2. Every pre- \mathscr{I} -regular set is β - \mathscr{I} -regular.

- K. Viswanathan, J. Jayasudha / Eur. J. Math. Sci., 1 (2012), 131-141
 - 3. Every β - \mathscr{I} -regular set is a β - \mathscr{I} -open set.
 - 4. Every β - \mathscr{I} -regular set is an α^* - \mathscr{I} -set.

Proof.

- Since every semi-*I*-open set is β-*I*-open and every t-*I*-set is an α^{*}-*I*-set [4], this is obvious.
- Since every pre-*I*-open set is β-*I*-open and every S-*I*-set is an α^{*}-*I*-set [4], this is obvious.
- 3., 4. The proof follows from their definitions.

The converse of Proposition 3 need not be true as seen from the following examples.

Example 7. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathscr{I} = \{\emptyset, \{b\}\}$. Then,

- 1. $A = \{a\}$ is a β - \mathscr{I} -regular set but not a semi- \mathscr{I} -regular set.
- 2. $A = \{a, c\}$ is a β - \mathscr{I} -regular set but not a pre- \mathscr{I} -regular set.
- 3. $A = \{c\}$ is an α^* - \mathscr{I} -set but not a β - \mathscr{I} -regular set.

Example 8. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{c\}, \{a, c\}, X\}$ and $\mathscr{I} = \{\emptyset, \{c\}\}$. Then, $A = \{a, c\}$ is a β - \mathscr{I} -open set but not a β - \mathscr{I} -regular set.

Remark 5. For the sets defined above, we have the following implications:

$Regular - \mathscr{I} - closed \Rightarrow ?$	<pre>*-perfect =</pre>	$\Rightarrow \tau^*$ -closed
\Downarrow		\Downarrow
semi- <i>I</i> -regular	\implies	t-∮-set
\Downarrow		\Downarrow
β - \mathscr{I} -regular	\Rightarrow	α^* - \mathscr{I} -set
\Downarrow		
β - \mathscr{I} -open		

Definition 8. A subset A of an ideal space (X, τ, \mathscr{I}) is said to be a weak $AB_{\mathscr{I}}$ -set if $A = U \cap V$ where U is open and V is β - \mathscr{I} -regular.

Proposition 4. For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties hold:

- 1. Every open set is a weak $AB_{\mathscr{G}}$ -set.
- 2. Every β - \mathscr{I} -regular set is a weak $AB_{\mathscr{I}}$ -set.
- 3. Every $AB_{\mathscr{G}}$ -set is a weak $AB_{\mathscr{G}}$ -set.

4. Every weak $AB_{\mathscr{A}}$ -set is a $C_{\mathscr{A}}$ -set.

Proof. The proof is obvious.

The converse of Proposition 4 need not be true as seen from the following example.

Example 9. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathscr{I} = \{\emptyset, \{b\}\}$. Then,

- 1. $A = \{a\}$ is a weak $AB_{\mathscr{I}}$ -set but not an open set.
- 2. $A = \{a, b, d\}$ is a weak $AB_{\mathscr{A}}$ -set but not a β - \mathscr{I} -regular set.
- 3. $A = \{a\}$ is a weak $AB_{\mathscr{G}}$ -set but not an $AB_{\mathscr{G}}$ -set.
- 4. $A = \{c\}$ is a $C_{\mathscr{G}}$ -set but not a weak $AB_{\mathscr{G}}$ -set.

Remark 6. We have the following diagram:

open set
$$\Rightarrow A_{\mathscr{I}}$$
-set $\Rightarrow \mathscr{I}$ -LC set \Rightarrow weakly \mathscr{I} -LC set
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $AB_{\mathscr{I}}$ -set \Rightarrow weak $AB_{\mathscr{I}}$ -set $\Rightarrow C_{\mathscr{I}}$ -set
 \uparrow
 β - \mathscr{I} -regular set

Lemma 1. [5] Let A be a subset of an ideal topological space (X, τ, \mathscr{I}) .

- 1. If $U \in \tau$, then $U \cap cl^*(A) \subset cl^*(U \cap A)$.
- 2. If $A \subset S \subset X$, then $cl_S^*(A) = cl^*(A) \cap S$.

Proposition 5. Let A be a subset of an ideal topological space (X, τ, \mathscr{I}) . If A is a weak $AB_{\mathscr{I}}$ -set then A is β - \mathscr{I} -open.

Proof. Let *A* be a weak $AB_{\mathscr{I}}$ -set. Then $A = U \cap V$, where *U* is open and *V* is a β - \mathscr{I} -regular set. Hence *V* is also a β - \mathscr{I} -open set. Since *V* is β - \mathscr{I} -open,

$$A = U \cap V \subset U \cap cl(int(cl^{*}(V))) \subset cl^{*}(U) \cap cl(int(cl^{*}(V)))$$
$$\subset cl(U \cap int(cl^{*}(V))) \subset cl(int(U) \cap int(cl^{*}(V)))$$
$$= cl(int(U \cap cl^{*}(V))) \subset cl(int(cl^{*}(U \cap V))),$$

by Lemma 1. Hence *A* is β - \mathscr{I} -open.

Theorem 2. For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following are equivalent:

- 1. A is β - \mathscr{I} -regular.
- 2. A is α^* - \mathscr{I} -set and a weak AB $_{\mathscr{I}}$ -set.

Proof. (1) \Rightarrow (2): This is obvious, since every β - \mathscr{I} -regular set is an α^* - \mathscr{I} -set and a weak $AB_{\mathscr{I}}$ -set.

(2) \Rightarrow (1): Let *A* be an α^* - \mathscr{I} -set and a weak $AB_{\mathscr{I}}$ -set. The proof follows from the fact that weak $AB_{\mathscr{I}}$ -set is β - \mathscr{I} -open.

Corollary 1. Let (X, τ, \mathscr{I}) be an \mathscr{I} -submaximal ideal topological space. Then weak $AB_{\mathscr{I}}(X) = \beta \mathscr{I}O(X)$.

Proof. Since *X* is \mathscr{I} -submaximal, then by [10], every strong β - \mathscr{I} -open set of *X* is an $AB_{\mathscr{I}}$ -set and hence a weak $AB_{\mathscr{I}}$ -set. Conversely, since every weak $AB_{\mathscr{I}}$ -set is β - \mathscr{I} -open, the proof is complete.

Theorem 3. For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following are equivalent:

- 1. A is an open set.
- 2. A is a weak $AB_{\mathscr{I}}$ -set and an α - \mathscr{I} -open set.

Proof. $(1) \Rightarrow (2)$: This is obvious.

(2) \Rightarrow (1): Let *A* be a weak $AB_{\mathscr{G}}$ -set and an α - \mathscr{G} -open set. Since *A* is α - \mathscr{G} -open, we have $A \subseteq int(cl^*(int(A)))$. Furthermore, because *A* is a weak $AB_{\mathscr{G}}$ -set we have $A = U \cap V$, where *U* is open and *V* is β - \mathscr{G} -regular. Now

 $A \subseteq int(cl^*(int(A))) = int(cl^*(int(U \cap V))) = int(cl^*(int(U) \cap int(V)))$ $\subset int[cl^*((int(U)) \cap cl^*(int(V))] = int(cl^*((int(U))) \cap int(cl^*(int(V))).$

Additionally, since V is a β - \mathscr{I} -regular set, V is also an α^* - \mathscr{I} -set. Thus $int(cl^*(int(V))) = int(V)$. Therefore $A \subset int(cl^*((int(U))) \cap int(V))$. Besides, because $A \subset U$, we have

$$A = U \cap A \subset U \cap (int(cl^*((int(U))) \cap int(V)) = (U \cap int(cl^*((int(U)))) \cap int(V))$$
$$= U \cap int(V).$$

Since *U* is an open set, $A \subset U \cap int(V) = int(U \cap V) = int(A)$. Thus $A \in \tau$.

Remark 7. The notions of α - \mathscr{I} -open sets and weak $AB_{\mathscr{I}}$ -sets are independent.

Example 10. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{c\}, \{a, c\}, X\}$ and $\mathscr{I} = \{\emptyset, \{c\}\}$. Then,

1. $A = \{a, c\}$ is an α - \mathscr{I} -open set but not a weak $AB_{\mathscr{I}}$ -set.

2. $A = \{b\}$ is a weak $AB_{\mathscr{I}}$ -set but not an α - \mathscr{I} -open set.

4. Decompositions of Continuity

Definition 9. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is said to be $SC_{\mathscr{I}}$ -continuous (resp. weakly $AB_{\mathscr{I}}$ -continuous) if $f^{-1}(V)$ is an $SC_{\mathscr{I}}$ -set (resp. weak $AB_{\mathscr{I}}$ -set) in (X, τ, \mathscr{I}) for each open set V of (Y, σ) .

Remark 8. 1. Every continuous function is α - \mathscr{I} -continuous [4] but not conversely.

- 2. Every continuous function is semi-*I*-continuous [4] but not conversely.
- 3. Every continuous function is $SC_{\mathscr{G}}$ -continuous but not conversely.
- 4. Every continuous function is weakly AB_g-continuous but not conversely.

Theorem 4. For a function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$, the following are equivalent:

- 1. *f* is continuous.
- 2. f is semi- \mathscr{I} -continuous and $SC_{\mathscr{I}}$ -continuous.

Proof. Follows from Theorem 1.

Theorem 5. For a function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$, the following are equivalent:

- 1. f is continuous.
- 2. *f* is weakly $AB_{\mathscr{I}}$ -continuous and α - \mathscr{I} -continuous.

Proof. Follows from Theorem 3.

5. Decompositions of *I*-R-Continuity

Definition 10. A subset A of an ideal space (X, τ, \mathscr{I}) is said to be gsp- \mathscr{I} -closed if $\beta \mathscr{I}cl(A) \subset U$ whenever $A \subset U$ and U is open.

Definition 11. A subset A of an ideal space (X, τ, \mathscr{I}) is said to be pre-gsp- \mathscr{I} -closed (resp. α -gsp- \mathscr{I} -closed) if $\beta \mathscr{I}cl(A) \subset U$ whenever $A \subset U$ and U is pre-open (resp. α -open).

Proposition 6. For an ideal space (X, τ, \mathscr{I}) , the following hold:

- 1. Every *I*-R-open set is an open set.
- 2. Every \mathscr{I} -R-open set is a β - \mathscr{I} -regular set.

Proof.

1. Let *A* be an \mathscr{I} -R-open set. Then $A = int(cl^*(A))$. Hence $cl^*(A) = int(cl^*(cl^*(A))) = int(cl^*(A))$. This shows that $cl^*(A)$ is open. Since $A \subseteq cl^*(A)$, it follows that *A* is open.

- K. Viswanathan, J. Jayasudha / Eur. J. Math. Sci., 1 (2012), 131-141
 - 2. Suppose *A* be an \mathscr{I} -R-open set. Then $A = int(cl^*(A)) \subseteq cl(int(cl^*(A)))$. This shows that *A* is β - \mathscr{I} -open. Again *A* is \mathscr{I} -R-open implies that $int(A) = int(cl^*(int(A)))$, which shows that *A* is an α^* - \mathscr{I} -set. Thus every \mathscr{I} -R-open set *A* is β - \mathscr{I} -open as well as an α^* - \mathscr{I} -set. Hence *A* is β - \mathscr{I} -regular.

The converse of Proposition 6 need not be true as seen from the following example.

Example 11. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathscr{I} = \{\emptyset, \{b\}\}$. Then,

- 1. $A = \{a, b, d\}$ is an open set but not an \mathscr{I} -R-open set.
- 2. $A = \{a\}$ is a β - \mathscr{I} -regular set but not an \mathscr{I} -R-open set.

Proposition 7. The following statements hold for a subset A of an ideal topological space (X, τ, \mathscr{I}) :

- 1. If A is a β - \mathscr{I} -regular set, then A is β - \mathscr{I} -closed.
- 2. If A is a β - \mathscr{I} -closed set, then A is pre-gsp- \mathscr{I} -closed.
- 3. If A is a pre-gsp- \mathscr{I} -closed set, then A is α -gsp- \mathscr{I} -closed.
- 4. If A is a pre-gsp-*I*-closed set, then A is gsp-*I*-closed.
- 5. If A is an α -gsp- \mathscr{I} -closed set, then A is gsp- \mathscr{I} -closed.

Theorem 6. For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following conditions are equivalent:

- 1. A is *I*-R-open.
- 2. A is open and β - \mathscr{I} -regular.
- 3. A is open and β - \mathscr{I} -closed.
- 4. A is open and pre-gsp-*I*-closed.
- 5. A is α - \mathscr{I} -open and pre-gsp- \mathscr{I} -closed.
- 6. A is α - \mathscr{I} -open and α -gsp- \mathscr{I} -closed.

Proof. (1) \Rightarrow (2): This follows from Proposition 6.

The implications $(2) \Rightarrow (3), (3) \Rightarrow (4), (4) \Rightarrow (5), (5) \Rightarrow (6)$ are obvious from their definitions. (6) \Rightarrow (1): Let *A* be an α - \mathscr{I} -open set and an α -gsp- \mathscr{I} -closed set. Since *A* is an α -gsp- \mathscr{I} -closed set, we have $\beta \mathscr{I}cl(A) \subset A$ and hence *A* is β - \mathscr{I} -closed. Therefore we obtain $int(cl(int^*(A))) \subseteq A$. Since every α - \mathscr{I} -open set is semi- \mathscr{I} -open [4], we have $cl^*(A) = cl^*(int(A))$. Further since *A* is α - \mathscr{I} -open we obtain

 $A \subseteq int(cl^*(A)) = int(cl^*(int(A))) \subseteq int(cl(int(A))) \subseteq int(cl(int^*(A))) \subseteq A.$

Thus we have $A = int(cl^*(A))$. This shows that A is \mathscr{I} -R-open.

Remark 9. In an ideal space (X, τ, \mathscr{I}) , the following hold:

- 1. The notions of open sets and β - \mathscr{I} -regular-sets are independent.
- 2. The notions of open sets and β - \mathscr{I} -closed sets are independent.
- 3. The notions of open sets and pre-gsp-*I*-closed sets are independent.
- 4. The notions of α - \mathscr{I} -open sets and pre-gsp- \mathscr{I} -closed sets are independent.
- 5. The notions of α - \mathscr{I} -open sets and α -gsp- \mathscr{I} -closed sets are independent.

Example 12. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathscr{I} = \{\emptyset, \{b\}\}$. Then,

- 1. $A = \{a, b, d\}$ is an open set but neither a β - \mathscr{I} -regular set nor a β - \mathscr{I} -closed set.
- 2. $A = \{a, b, d\}$ is an open set but not a pre-gsp- \mathscr{I} -closed set.
- 3. $A = \{a\}$ is β - \mathscr{I} -regular, β - \mathscr{I} -closed and pre-gsp- \mathscr{I} -closed but not an open set.
- 4. $A = \{a, b, d\}$ is an α - \mathscr{I} -open set but neither a pre-gsp- \mathscr{I} -closed set nor an α -gsp- \mathscr{I} -closed set.
- 5. $A = \{a\}$ is both pre-gsp- \mathscr{I} -closed and α -gsp- \mathscr{I} -closed but not an α - \mathscr{I} -open set.

Definition 12. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is said to be \mathscr{I} -R-continuous (resp. $\beta \cdot \mathscr{I}$ -perfectly continuous) if $f^{-1}(V)$ is an \mathscr{I} -R-open set (resp. $\beta \cdot \mathscr{I}$ -regular set) in (X, τ, \mathscr{I}) for each open set V of (Y, σ) .

Definition 13. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is said to be contra pre-gsp- \mathscr{I} -continuous (resp. contra α -gsp- \mathscr{I} -continuous) if $f^{-1}(V)$ is a pre-gsp- \mathscr{I} -closed set (resp. α -gsp- \mathscr{I} -closed set) in (X, τ, \mathscr{I}) for each open set V of (Y, σ) .

Theorem 7. For a function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ the following are equivalent:

- 1. f is \mathscr{I} -R-continuous.
- 2. *f* is continuous and β - \mathscr{I} -perfectly continuous.
- 3. *f* is continuous and contra β - \mathscr{I} -continuous.
- *4. f* is continuous and contra pre-gsp-*I*-continuous.
- 5. f is α - \mathscr{I} -continuous and contra pre-gsp- \mathscr{I} -continuous.
- 6. *f* is α - \mathscr{I} -continuous and contra α -gsp- \mathscr{I} -continuous.

Proof. This is an immediate consequence of Theorem 6.

References

- A. Acikgoz, S. Yuksel and T. Noiri, α-*I*-preirresolute functions and β-*I*-preirresolute functions, Bull. Malaysian Math. Sci. Soc., 28(2), 1-8. 2005.
- [2] J. Bhuvaneswari, A. Keskin, N. Rajesh, Contra-continuity via topological ideals, J. Adv. Res. Pure Math., 3(1), 40-51. 2011.
- [3] J. Dontchev, On pre-*I*-open sets and a decomposition of *I*-continuity, Banyan Math. J., 2. 1996.
- [4] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96, 341-349. 2002.
- [5] E. Hatir, A. Keskin, T. Noiri, A note on strong β-𝔅-sets and strong β-𝔅-continuous functions, Acta Math. Hungar., 108, 87-94. 2005.
- [6] K. Kuratowski, Topology, Vol. I, Academic press, New York, 1966.
- [7] A. Keskin, T. Noiri, S. Yuksel, *Idealization of a decomposition theorem*, Acta Math. Hungar., 102, 269-277. 2004.
- [8] A. Keskin and S. Yuksel, On semi-*I*-regular sets, AB_I-sets and decompositions of continuity, R_IC-continuity, A_I-continuity, Acta Math. Hungar., 113(3), 227-241. 2006.
- [9] A. Keskin, S. Yuksel and T. Noiri, *Decompositions of I-continuity and continuity*, Commun. Fac. Sci. Univ. Ank. Series A1, 53, 67-75. 2004.
- [10] V. Renukadevi, Semiregular sets and AB-sets in ideal topological spaces, J. Adv. Res. Pure Math., 2(3), 13-23. 2010.
- [11] R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, 1960.
- [12] S. Yuksel, A. Acikgoz, T. Noiri, On δ - \mathscr{I} -continuous functions, Turk. J. Math., 29, 39-51. 2050.